1
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
2
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Sabzehmeidani MM, Kazemzad M. Recent advances in surface-mounted metal-organic framework thin film coatings for biomaterials and medical applications: a review. Biomater Res 2023; 27:115. [PMID: 37950330 PMCID: PMC10638836 DOI: 10.1186/s40824-023-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Coatings of metal-organic frameworks (MOFs) have potential applications in surface modification for medical implants, tissue engineering, and drug delivery systems. Therefore, developing an applicable method for surface-mounted MOF engineering to fabricate protective coating for implant tissue engineering is a crucial issue. Besides, the coating process was desgined for drug infusion and effect opposing chemical and mechanical resistance. In the present review, we discuss the techniques of MOF coatings for medical application in both in vitro and in vivo in various systems such as in situ growth of MOFs, dip coating of MOFs, spin coating of MOFs, Layer-by-layer methods, spray coating of MOFs, gas phase deposition of MOFs, electrochemical deposition of MOFs. The current study investigates the modification in the implant surface to change the properties of the alloy surface by MOF to improve properties such as reduction of the biofilm adhesion, prevention of infection, improvement of drugs and ions rate release, and corrosion resistance. MOF coatings on the surface of alloys can be considered as an opportunity or a restriction. The presence of MOF coatings in the outer layer of alloys would significantly demonstrate the biological, chemical and mechanical effects. Additionally, the impact of MOF properties and specific interactions with the surface of alloys on the anti-microbial resistance, anti-corrosion, and self-healing of MOF coatings are reported. Thus, the importance of multifunctional methods to improve the adhesion of alloy surfaces, microbial and corrosion resistance and prospects are summarized.
Collapse
Affiliation(s)
- Mohammad Mehdi Sabzehmeidani
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| |
Collapse
|
4
|
Wick TV, Roberts TR, Batchinsky AI, Tuttle RR, Reynolds MM. Surface Modification of Oxygenator Fibers with a Catalytically Active Metal-Organic Framework to Generate Nitric Oxide: An Ex Vivo Pilot Study. ACS APPLIED BIO MATERIALS 2023; 6:1953-1959. [PMID: 37068205 DOI: 10.1021/acsabm.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Coating all portions of an extracorporeal membrane oxygenation (ECMO) circuit with materials exhibiting inherent, permanent antithrombotic properties is an essential step to prevent thrombus-induced complications. However, developing antithrombotic coatings for oxygenator fibers within membrane oxygenators of ECMO systems has proven challenging. We have used polydopamine (PDA) to coat oxygenator fibers and immobilize a Cu-based metal-organic framework (MOF) on the surface to act as a nitric oxide (NO) catalyst. Importantly, the PDA/MOF coating will produce NO indefinitely from endogenous S-nitrosothiols and it has not previously been applied to ECMO oxygenator fibers.
Collapse
Affiliation(s)
- Tracey V Wick
- Colorado State University, 301 W. Pitkin, Chemistry Research Building, Fort Collins, Colorado 80521, United States
| | - Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle Building 125, 2nd Floor, San Antonio, Texas 78235, United States
| | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle Building 125, 2nd Floor, San Antonio, Texas 78235, United States
| | - Robert R Tuttle
- Colorado State University, 301 W. Pitkin, Chemistry Research Building, Fort Collins, Colorado 80521, United States
| | - Melissa M Reynolds
- Colorado State University, 301 W. Pitkin, Chemistry Research Building, Fort Collins, Colorado 80521, United States
| |
Collapse
|
5
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
6
|
Antiadherent AgBDC Metal-Organic Framework Coating for Escherichia coli Biofilm Inhibition. Pharmaceutics 2023; 15:pharmaceutics15010301. [PMID: 36678928 PMCID: PMC9866433 DOI: 10.3390/pharmaceutics15010301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have become a promising strategy against the biofilm formation in biomedical devices due to their biocidal activity without compromising the bulk material. Here, we propose for the first time a silver-based metal-organic framework (MOF; here denoted AgBDC) showing original antifouling properties able to suppress not only the initial bacterial adhesion, but also the potential surface contamination. Firstly, the AgBDC stability (colloidal, structural and chemical) was confirmed under bacteria culture conditions by using agar diffusion and colony counting assays, evidencing its biocide effect against the challenging E. coli, one of the main representative indicators of Gram-negative resistance bacteria. Then, this material was shaped as homogeneous spin-coated AgBDC thin film, investigating its antifouling and biocide features using a combination of complementary procedures such as colony counting, optical density or confocal scanning microscopy, which allowed to visualize for the first time the biofilm impact generated by MOFs via a specific fluorochrome, calcofluor.
Collapse
|
7
|
Park KC, Martin CR, Leith GA, Thaggard GC, Wilson GR, Yarbrough BJ, Maldeni Kankanamalage BKP, Kittikhunnatham P, Mathur A, Jatoi I, Manzi MA, Lim J, Lehman-Andino I, Hernandez-Jimenez A, Amoroso JW, DiPrete DP, Liu Y, Schaeperkoetter J, Misture ST, Phillpot SR, Hu S, Li Y, Leydier A, Proust V, Grandjean A, Smith MD, Shustova NB. Capture Instead of Release: Defect-Modulated Radionuclide Leaching Kinetics in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:16139-16149. [PMID: 36027644 DOI: 10.1021/jacs.2c06905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Isak Jatoi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mackenzie A Manzi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | | | | | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - David P DiPrete
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joseph Schaeperkoetter
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Scott T Misture
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Shenyang Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yulan Li
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Antoine Leydier
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Vanessa Proust
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Agnès Grandjean
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Han D, Liu X, Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 2022; 51:7138-7169. [PMID: 35866702 DOI: 10.1039/d2cs00460g] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria, as the most abundant living organisms, have always been a threat to human life until the development of antibiotics. However, with the wide use of antibiotics over a long time, bacteria have gradually gained tolerance to antibiotics, further aggravating threat to human beings and environmental safety significantly. In recent decades, new bacteria-killing methods based on metal ions, hyperthermia, free radicals, physical pricks, and the coordination of several multi-mechanisms have attracted increasing attention. Consequently, multiple types of new antibacterial agents have been developed. Among them, metal organic frameworks (MOFs) appear to play an increasingly important role. The unique characteristics of MOFs make them suitable multiple-functional platforms. By selecting the appropriate metastable coordination bonds, MOFs can act as reservoirs and release antibacterial metal ions or organic linkers; by constructing a porous structure, MOFs can act as carriers for multiple types of agents and achieve slow and sustained release; and by designing their composition and the pore structure precisely, MOFs can be endowed with properties to produce heat and free radicals under stimulation. Importantly, in combination with other materials, MOFs can act as a platform to kill bacteria effectively through the synergistic effect of multiple types of mechanisms. In this review, we focus on the recent development of MOF-based antibacterial agents, which are classified according to their antibacterial mechanisms.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Melvin AC, Wick TV, Zang Y, Harea GT, Cancio LC, Reynolds MM, Batchinsky AI, Roberts TR. Development and Blood Compatibility of a Stable and Bioactive Metal-Organic Framework Composite Coating for Blood-Circulation Tubing. ACS Biomater Sci Eng 2022; 8:3438-3449. [PMID: 35776832 DOI: 10.1021/acsbiomaterials.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Medical devices that require substantial contact between blood and a foreign surface would be dramatically safer if constructed from materials that prevent clot formation and coagulation disturbance at the blood-biomaterial interface. Nitric oxide (NO), an endogenous inhibitor of platelet activation in the vascular endothelium, could provide anticoagulation at the blood-surface interface when applied to biomaterials. We investigated an application of a copper-based metal-organic framework, H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O where H3BTTri = 1,3,5-tris(1H-1,2,3-triazole-5-yl)benzene] (CuBTTri), which has been shown to be an effective catalyst to generate NO from S-nitrosothiols that are endogenously present in blood. A method was developed to apply a CuBTTri composite coating to Tygon medical tubing used for extracorporeal lung support devices. The stability and activity of the coating were evaluated during 72 h dynamic saline flow testing (1.5-2.5 L/min, n = 3) with scanning electron microscopy imaging and inductively coupled mass-spectroscopy analysis. Compatibility of the coating with whole blood was assessed with a panel of hemocompatibility tests during 6 h circulation of swine donor blood in an ex vivo circulation loop constructed with CuBTTri tubing or unmodified Tygon (1.5 L/min blood flow rate, n = 8/group). Thrombus deposition and catalytic activity of the CuBTTri tubing were assessed following blood exposure. The coating remained stable during 72 h saline flow experiments at clinically relevant flow rates. No adverse effects were observed relative to controls during blood compatibility testing, to include no significant changes in platelet count (p = 0.42), platelet activation indicated by P-selectin expression (p = 0.57), coagulation panel values, or methemoglobin fraction (p = 0.18) over the 6 h circulation period. CuBTTri within the coating generated NO following blood exposure in the presence of biologically relevant concentrations of an NO donor. CuBTTri composite coating was stable and blood compatible in this pilot study and requires further investigation of efficacy using in vivo models conducted with clinically relevant blood flow rates and study duration.
Collapse
Affiliation(s)
- Alyssa C Melvin
- Colorado State University, 301 West Pitkin Street, Fort Collins, Colorado 80523, United States
| | - Tracey V Wick
- Colorado State University, 301 West Pitkin Street, Fort Collins, Colorado 80523, United States
| | - Yanyi Zang
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle, San Antonio, Texas 78259, United States
| | - George T Harea
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle, San Antonio, Texas 78259, United States
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research Burn Center, 3698 Chambers Road, Fort Sam Houston, Texas 78234, United States
| | - Melissa M Reynolds
- Colorado State University, 301 West Pitkin Street, Fort Collins, Colorado 80523, United States
| | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle, San Antonio, Texas 78259, United States
| | - Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle, San Antonio, Texas 78259, United States
| |
Collapse
|
10
|
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Shyngys M, Ren J, Liang X, Miao J, Blocki A, Beyer S. Metal-Organic Framework (MOF)-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:603608. [PMID: 33777907 PMCID: PMC7991400 DOI: 10.3389/fbioe.2021.603608] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of Metal-organic Frameworks (MOFs) and their evaluation for various applications is one of the largest research areas within materials sciences and chemistry. Here, the use of MOFs in biomaterials and implants is summarized as narrative review addressing primarely the Tissue Engineering and Regenerative Medicine (TERM) community. Focus is given on MOFs as bioactive component to aid tissue engineering and to augment clinically established or future therapies in regenerative medicine. A summary of synthesis methods suitable for TERM laboratories and key properties of MOFs relevant to biomaterials is provided. The use of MOFs is categorized according to their targeted organ (bone, cardio-vascular, skin and nervous tissue) and whether the MOFs are used as intrinsically bioactive material or as drug delivery vehicle. Further distinction between in vitro and in vivo studies provides a clear assessment of literature on the current progress of MOF based biomaterials. Although the present review is narrative in nature, systematic literature analysis has been performed, allowing a concise overview of this emerging research direction till the point of writing. While a number of excellent studies have been published, future studies will need to clearly highlight the safety and added value of MOFs compared to established materials for clinical TERM applications. The scope of the present review is clearly delimited from the general 'biomedical application' of MOFs that focuses mainly on drug delivery or diagnostic applications not involving aspects of tissue healing or better implant integration.
Collapse
Affiliation(s)
- Moldir Shyngys
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jia Ren
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoqi Liang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiechen Miao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- Institute for Tissue Engineering & Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sebastian Beyer
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering & Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
12
|
Hu M, Shu Y, Kirillov A, Liu W, Yang L, Dou W. Epoxy Functional Composites Based on Lanthanide Metal-Organic Frameworks for Luminescent Polymer Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7625-7634. [PMID: 33533612 DOI: 10.1021/acsami.0c23030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of metal-organic frameworks (MOF) into organic polymers represents a direct and effective strategy for developing innovative composite materials that combine the exceptional properties of MOFs with the robustness of organic polymers. However, the preparation of MOF@polymer hybrid composites requires an efficient dispersion and interaction of MOF particles with polymer matrices, which remains a significant challenge. In this work, a new simple and direct approach was applied for the development of Ln-MOF@polymer materials. A series of Ln-MOF@TGIC composites {Ln-MOF = [Ln(μ3-BTC)(H2O)6]n (Ln-BTC), where Ln = Eu, Tb, Eu0.05Tb0.95; H3BTC = 1,3,5-benzenetricarboxylic acid; TGIC = triglycidyl isocyanurate} were successfully obtained by applying a grinding method via the chemical bonding between uncoordinated carboxylate groups in Ln-BTC and epoxy groups in TGIC. The Ln-BTC@TGIC materials possess significant fluorescence characteristics with superior emission lifetimes and quantum yields if compared to parent Ln-MOFs. Interestingly, under the UV irradiation, a considerable color change from yellow in Eu0.05Tb0.95-BTC to red in Eu0.05Tb0.95-BTC@TGIC was observed. The energy-transfer mechanism was also rationalized by the density functional theory (DFT) calculations. The developed Ln-BTC@TGIC composites were further applied as functional fluorescent coatings for the fabrication, via a simple spraying method, of the flexible polyimide (PI) films, Ln-BTC@TGIC@PI. Thus, the present work unveils a new methodology and expands its applicability for the design and assembly of stable, multicomponent, and soft polymer materials with remarkable fluorescence properties.
Collapse
Affiliation(s)
- Mingyang Hu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ying Shu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander Kirillov
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Dou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Mallakpour S, Sirous F, Hussain CM. Metal–organic frameworks/biopolymer nanocomposites: from fundamentals toward recent applications in modern technology. NEW J CHEM 2021. [DOI: 10.1039/d1nj01302e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bio–nanocomposite compounds based on biopolymers and MOFs have presented great potential in various applications for modern technology.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
14
|
Gomes IB, Simões M, Simões LC. Copper Surfaces in Biofilm Control. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2491. [PMID: 33322518 PMCID: PMC7764739 DOI: 10.3390/nano10122491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Biofilms are structures comprising microorganisms associated to surfaces and enclosed by an extracellular polymeric matrix produced by the colonizer cells. These structures protect microorganisms from adverse environmental conditions. Biofilms are typically associated with several negative impacts for health and industries and no effective strategy for their complete control/eradication has been identified so far. The antimicrobial properties of copper are well recognized among the scientific community, which increased their interest for the use of these materials in different applications. In this review the use of different copper materials (copper, copper alloys, nanoparticles and copper-based coatings) in medical settings, industrial equipment and plumbing systems will be discussed considering their potential to prevent and control biofilm formation. Particular attention is given to the mode of action of copper materials. The putative impact of copper materials in the health and/or products quality is reviewed taking into account their main use and the possible effects on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Inês B. Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Lúcia C. Simões
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|