1
|
Sun W, Wang ZX, Guo Y, Li C, Gao G, Wu FG. Iodine/soluble starch cryogel: An iodine-based antiseptic with instant water-solubility, improved stability, and potent bactericidal activity. Carbohydr Polym 2024; 340:122217. [PMID: 38857997 DOI: 10.1016/j.carbpol.2024.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024]
Abstract
Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 μg/mL of I2. Although KI3 and the commercially available povidone‑iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and ∼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China; Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yuxin Guo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ge Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
2
|
An Y, Wang Z, Wu FG. Fluorescent carbon dots for discriminating cell types: a review. Anal Bioanal Chem 2024; 416:3945-3962. [PMID: 38886239 DOI: 10.1007/s00216-024-05328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Carbon dots (CDs) are quasi-spherical carbon nanoparticles with excellent photoluminescence, good biocompatibility, favorable photostability, and easily modifiable surfaces. CDs, serving as fluorescent probes, have emerged as an ideal tool for cellular differentiation owing to their outstanding luminescence performance and tunable surface properties. In this review, we summarize the recent research progress with CDs in the differentiation of cancer/normal cells, Gram-positive/Gram-negative bacteria, and live/dead cells, as well as the cellular differences used for differentiation. Additionally, we summarize the preparation methods, raw materials, and properties of the CDs used for cell discrimination. The differentiation mechanisms and the advantages or limitations of the differentiation methods are also introduced. Finally, we propose several research challenges in this field and future research directions that require extensive investigation. It is hoped that this review will help researchers in the design of new CDs as ideal fluorescent probes for realizing diverse cell differentiation applications.
Collapse
Affiliation(s)
- Yaolong An
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
3
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
4
|
Ju S, Cho HY. Biohybrid Nanoparticle-Based In Situ Monitoring of In Vivo Drug Delivery. BIOSENSORS 2023; 13:1017. [PMID: 38131776 PMCID: PMC10741677 DOI: 10.3390/bios13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Nanomaterials have gained huge attention worldwide owing to their unique physicochemical characteristics which enable their applications in the field of biomedicine and drug delivery systems. Although nanodrug delivery systems (NDDSs) have better target specificity and bioavailability than traditional drug delivery systems, their behavior and clearance mechanisms in living subjects remain unclear. In this regard, the importance of bioimaging methods has come to the forefront for investigating the biodistribution of nanocarriers and discovering drug release mechanisms in vivo. In this review, we introduce several examples of biohybrid nanoparticles and their clinical applications, focusing on their advantages and limitations. The various bioimaging methods for monitoring the fate of nanodrugs in biological systems and the future perspectives of NDDSs have also been discussed.
Collapse
Affiliation(s)
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea;
| |
Collapse
|
5
|
Zhang J, Neupane N, Dahal PR, Rahimi S, Cao Z, Pandit S, Mijakovic I. Antibiotic-Loaded Boron Nitride Nanoconjugate with Strong Performance against Planktonic Bacteria and Biofilms. ACS APPLIED BIO MATERIALS 2023; 6:3131-3142. [PMID: 37473743 PMCID: PMC10445265 DOI: 10.1021/acsabm.3c00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Protecting surfaces from biofilm formation presents a significant challenge in the biomedical field. The utilization of antimicrobial component-conjugated nanoparticles is becoming an attractive strategy against infectious biofilms. Boron nitride (BN) nanomaterials have a unique biomedical application value due to their excellent biocompatibility. Here, we developed antibiotic-loaded BN nanoconjugates to combat bacterial biofilms. Antibiofilm testing included two types of pathogens, Staphylococcus aureus and Escherichia coli. Gentamicin was loaded on polydopamine-modified BN nanoparticles (GPBN) to construct a nanoconjugate, which was very effective in killing E. coli and S. aureus planktonic cells. GPBN exhibited equally strong capacity for biofilm destruction, tested on preformed biofilms. A 24 h treatment with the nanoconjugate reduced cell viability by more than 90%. Our results suggest that GPBN adheres to the surface of the biofilm, penetrates inside the biofilm matrix, and finally deactivates the cells. Interestingly, the GPBN coatings also strongly inhibited the formation of bacterial biofilms. Based on these results, we suggest that GPBN could serve as an effective means for treating biofilm-associated infections and as coatings for biofilm prevention.
Collapse
Affiliation(s)
- Jian Zhang
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nisha Neupane
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Microbiology, Tri-Chandra Multiple College, Tribhuvan University, 44600 Kathmandu, Nepal
| | - Puspa Raj Dahal
- Department
of Microbiology, Tri-Chandra Multiple College, Tribhuvan University, 44600 Kathmandu, Nepal
| | - Shadi Rahimi
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Zhejian Cao
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Santosh Pandit
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ivan Mijakovic
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- The
Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, DK-2800 Kogens Lyngby, Denmark
| |
Collapse
|
6
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
7
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Rodriguez-Alvarez JS, Kratky L, Yates-Alston S, Sarkar S, Vogel K, Gutierrez-Aceves J, Levi N. A PEDOT nano-composite for hyperthermia and elimination of urological bacteria. BIOMATERIALS ADVANCES 2022; 139:212994. [PMID: 35882143 DOI: 10.1016/j.bioadv.2022.212994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Novel modalities for overcoming recurrent urinary tract infections associated with indwelling urinary catheters are needed, and rapidly induced hyperthermia is one potential solution. PEDOT nanotubes are a class of photothermal particles that can easily be incorporated into silicone to produce thin, uniform coating on medical grade silicone catheters; subsequent laser stimulation therein imparts temperature elevations that can eliminate bacteria and biofilms. PEDOT silicone coatings are stable following thermal sterilization and repeated heating and cooling cycles. Laser stimulation can induce temperature increases of up to 55 °C in 300 s, but only 45 s was needed for ablation of UTI inducing E. coli biofilms in vitro. This work also demonstrates that mild hyperthermia of 50 °C, applied for only 31 s in the presence of antibiotics could eliminate E. coli biofilm as effectively as high temperatures. This work culminates in the evaluation of the PEDOT NTs for photothermal elimination of E. coli in an in vivo model to demonstrate the safety and effectiveness of a photothermal nanocomposite (16 s treatment time) for rapid clearance of E. coli.
Collapse
Affiliation(s)
- Juan Sebastian Rodriguez-Alvarez
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America; Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lauren Kratky
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kenneth Vogel
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Jorge Gutierrez-Aceves
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
10
|
Xu Y, Chen H, Fang Y, Wu J. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater 2022; 11:e2200494. [PMID: 35751637 DOI: 10.1002/adhm.202200494] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Indexed: 01/24/2023]
Abstract
Wound healing is a complex biological process that involves tissue regeneration. Traditional wound dressings are dry, cannot provide a moist environment for wound healing, and do not have high antibacterial properties. Hydrogels, which are capable of retaining large amounts of water, can create a moist healing environment. Currently, phototherapies have exhibited a high potential for the treatment of bacterial infections. Therefore, combining hydrogels with phototherapy can adequately overcome the shortcomings of traditional wound treatment methods and show great potential for wound healing owing to their high efficiency, low irritation, and good antibacterial performance. In this review, the application of hydrogels combined with phototherapy in wound healing is summarized. First, the basic principles of photodynamic therapy and photothermal therapy are briefly introduced. In addition, the progress of the application of hydrogel combined with phototherapy in wound healing is systematically investigated. Finally, the challenges and prospects of combining hydrogel with phototherapy in wound healing are discussed.
Collapse
Affiliation(s)
- Yinglin Xu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haolin Chen
- Department of Haematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510006, China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
11
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
12
|
Xu Z, Wang T, Liu J. Recent Development of Polydopamine Anti-Bacterial Nanomaterials. Int J Mol Sci 2022; 23:ijms23137278. [PMID: 35806281 PMCID: PMC9266540 DOI: 10.3390/ijms23137278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polydopamine (PDA), as a mussel-inspired material, exhibits numerous favorable performance characteristics, such as a simple preparation process, prominent photothermal transfer efficiency, excellent biocompatibility, outstanding drug binding ability, and strong adhesive properties, showing great potential in the biomedical field. The rapid development of this field in the past few years has engendered substantial progress in PDA antibacterial materials. This review presents recent advances in PDA-based antimicrobial materials, including the preparation methods and antibacterial mechanisms of free-standing PDA materials and PDA-based composite materials. Furthermore, the urgent challenges and future research opportunities for PDA antibacterial materials are discussed.
Collapse
Affiliation(s)
- Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
| | - Tingting Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Correspondence: (T.W.); (J.L.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
- Correspondence: (T.W.); (J.L.)
| |
Collapse
|
13
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
14
|
He X, Obeng E, Sun X, Kwon N, Shen J, Yoon J. Polydopamine, harness of the antibacterial potentials-A review. Mater Today Bio 2022; 15:100329. [PMID: 35757029 PMCID: PMC9218838 DOI: 10.1016/j.mtbio.2022.100329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is one of the major causes of morbidity and mortality, triggered by the adhesion of microbes and to some extent the formation of biofilms. This condition has been quite challenging in the health and industrial sector. Conditions and processes required to foil these infectious and resistance are of much concern. The synthesis of PDA material, inspired by the Mytilus edulis foot protein (MEFP)5 possesses unique characteristics that allow for, adhesion, photothermal therapy, synergistic effects with other materials, biocompatibility process, etc. Therefore, their usage holds great potential for dealing with both the infectious nature and the antibiotic resistance processes. Hence, this review provides an overview of the mechanism involved in accomplishing and eradicating bacteria, the recently harnessed antibacterial effect of the PDA through other properties they possess, a way forward in tapping the benefit embedded in the PDA, and the future perspective.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
15
|
Iafisco M, Carella F, Esposti LD, Adamiano A, Catalucci D, Modica J, Bragonzi A, Vitali A, Torelli R, Sanguinetti M, Bugli F. Biocompatible antimicrobial colistin loaded calcium phosphate nanoparticles for the counteraction of biofilm formation in cystic fibrosis related infections. J Inorg Biochem 2022; 230:111751. [DOI: 10.1016/j.jinorgbio.2022.111751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
|
16
|
Yang K, Hai L, Wang Z, Li H, Yi W, Luo Y, Li J, Deng L, He D. A biofilm microenvironment-responsive one-for-all bactericidal nanoplatform for photothermal-augmented multimodal synergistic therapy of pathogenic bacterial biofilm infection. J Mater Chem B 2022; 10:7744-7759. [DOI: 10.1039/d2tb01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We rationally construct a biofilm microenvironment-responsive bactericidal nanoplatform (ZnPMp) consisting of ZnO core, a Fe3+-doped polydopamine coating and methylene blue (MB) payload for combined CT/CDT/PTT/PDT multi-mode antibacterial therapy.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen 518116, China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Huan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wenhua Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuze Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Junqin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
17
|
Gan Y, Lin C, Zhu H, Cheng X, Liu C, Shi J. An injectable self-healing CS/PDA–AgNPs hybrid hydrogel for mild and highly-efficient photothermal sterilization. NEW J CHEM 2022. [DOI: 10.1039/d2nj00878e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An injectable self-healing hybrid hydrogel was constructed for combating bacterial infection under mild photothermal conditions.
Collapse
Affiliation(s)
- Ying Gan
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Chen Lin
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Hao Zhu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Xuedan Cheng
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Chaoqun Liu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
18
|
Yang J, Zhu YX, Lu P, Zhu B, Wu FG. One-step synthesis of quaternized silica nanoparticles with bacterial adhesion and aggregation properties for effective antibacterial and antibiofilm treatments. J Mater Chem B 2022; 10:3073-3082. [DOI: 10.1039/d1tb02830h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preservation of intact cell morphology of bacteria is recognized as one important cause of bacterial drug resistance, and hence developing new antibacterial agents capable of fighting against bacteria via disrupting...
Collapse
|
19
|
Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomater Sci Eng 2021; 8:109-118. [PMID: 34936344 DOI: 10.1021/acsbiomaterials.1c01267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotic-resistant pathogens are a serious threat to global public health. The emergence of drug-resistant pathogens is due to the improper use of antibiotics, making the treatment of bacterial infections very challenging. Here, we reported an efficient antibiotic delivery nanoparticle to minimize antibiotic resistance. The nanoparticle was designed to target the bacterial membrane using mesoporous silica nanoparticles (MSNs) modified with an ovotransferrin-derived antimicrobial peptide (OVTp12), enabling the antibiotic to be delivered to the vicinity of the pathogenic bacteria. Moreover, we observed that OVTp12-modified nanoparticles effectively inhibited the growth of Escherichia coli in vitro and in vivo. The nanoparticle with high biosafety could significantly downregulate the expression of inflammation-related cytokines in infected tissues. Thus, this novel bacterial targeted nanoparticle provides advantages in minimizing bacterial drug resistance and treating bacterial infection.
Collapse
Affiliation(s)
- Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Deog Hwan Oh
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Science, Kangwon National University, Chunchon 24341, South Korea
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
20
|
Lin F, Qi Q, Zhang J, Zhou W, Zhang J, Fu P, Zhang X, Qiao X, Liu M, Pang X, Cui Z. From Unimolecular Template to Silver Nanocrystal Clusters: An Effective Strategy to Balance Antibacterial Activity and Cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39806-39818. [PMID: 34387459 DOI: 10.1021/acsami.1c07986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silver nanomaterials have attracted a great deal of interest due to their broad-spectrum antimicrobial activity. However, it is still challenging to balance the high antibacterial efficiency with low damage to biological cells of silver nanostructures, especially when the diameter decreases to less than 10 nm. Here, we developed a new type of Ag nanohybrid material via a unimolecular micelle template method, which presents amazing antibacterial activities and almost noncytotoxicity. First, water-soluble multiarm star-shaped brushlike copolymer α-CD-g-[(PEO40-g-PAA50)-b-PEO5]18 was precisely synthesized and its micelle behavior in different solvents was revealed. Then, nanocrystal clusters assembled by Ag grains (Ag@Template NCs) were prepared through an in situ redox route using the unimolecular micelle of α-CD-g-[(PEO40-g-PAA50)-b-PEO5]18 as the soft template, AgNO3 as a precursor, and tetrabutylammonium borohydride (TBAB) as the reducing agent. The overall size of the achieved Ag@Template NCs is controlled by the template structure at around 40 nm (Dh in DMF), and the size of the Ag grain can be easily regulated from ∼1 to ∼5 nm by adjusting the feeding ratio of AgNO3/acrylic acid (AA) units in the template from 1:10 to 1:1. Benefitting from the structural design of the template, all Ag@Template NCs prepared here exhibit excellent dispersibility and chemical stability in different aqueous environments (neutral, pH = 5.5, and 0.9% NaCl physiological saline solution), which play a crucial role in the long-term storage and potential application in a complex physiological environment. The antibacterial and cytotoxicity tests indicate that Ag@Template NCs display much better performance than Ag nanoparticles (Ag NPs), which have a comparable overall size of ∼25 nm. The inhibitory capability of Ag@Template NCs to bacteria strongly depends on the grain size. Specifically, the Ag@Template-1 NC assembled by the smallest grains (1.6 ± 0.3 nm) presents the best antibacterial activity. For E. coli (-), the MIC value is as low as 5 μg/mL (0.36 μg/mL of Ag), while for S. aureus (+), the value is around 10 μg/mL (0.72 μg/mL of Ag). The survival rate of L02 cells and lactate dehydrogenase assay together illustrate the low cytotoxicity possessed by the prepared Ag@Template NCs. Therefore, the proposed Ag@Template NC structure successfully resolves the high reactivity, instability, and fast oxidation issues of the ultrasmall Ag nanoparticles, and integrates high antibacterial efficiency and nontoxicity to biological cells into one platform, which implies its broad potential application in biomedicine.
Collapse
Affiliation(s)
- Fangke Lin
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Qi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Junle Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Zhou
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahui Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Subhadarshini S, Singh R, Mandal A, Roy S, Mandal S, Mallik S, Goswami DK, Das AK, Das NC. Silver Nanodot Decorated Dendritic Copper Foam As a Hydrophobic and Mechano-Chemo Bactericidal Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9356-9370. [PMID: 34328738 DOI: 10.1021/acs.langmuir.1c00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present work investigates the time-dependent antibacterial activity of the silver nanodot decorated dendritic copper foam nanostructures against Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) bacteria. An advanced antibacterial and antifouling surface is fabricated utilizing the collective antibacterial properties of silver nanodots, chitosan, and dendritic copper foam nanostructures. The porous network of the Ag nanodot decorated Cu foam is made up of nanodendrites, which reduce the wettability of the surface. Hence, the surface exhibits hydrophobic nature and inhibits the growth of bacterial flora along with the elimination of dead bacterial cells. The fabricated surface exhibits a water contact angle (WCA) of 158.7 ± 0.17°. Specifically, we tested the fabricated material against both the Gram-positive and Gram-negative bacterial models. The antibacterial activity of the fabricated surface is evident from the growth inhibition percentage of bacterial strains of Escherichia coli (72.30 ± 0.60%) and Bacillus subtilis (48.30 ± 1.71%). The micrographs obtained from scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) of the treated cells show the damaged cellular structures of the bacteria, which is strong evidence of successful antibacterial action. The antibacterial effect can be attributed to the synergistic mechano-chemo mode of action involving mechanical disruption of the bacterial cell wall by the nanoprotrusions present on the Cu dendrites along with the chemical interaction of the Ag nanodots with vital intracellular components.
Collapse
Affiliation(s)
- Suvani Subhadarshini
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rashika Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ajoy Mandal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Satyajit Roy
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Mandal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Samik Mallik
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dipak K Goswami
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit K Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Narayan C Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
22
|
Aboelmaati MG, Abdel Gaber SA, Soliman WE, Elkhatib WF, Abdelhameed AM, Sahyon HA, El-Kemary M. Biogenic and biocompatible silver nanoparticles for an apoptotic anti-ovarian activity and as polydopamine-functionalized antibiotic carrier for an augmented antibiofilm activity. Colloids Surf B Biointerfaces 2021; 206:111935. [PMID: 34252691 DOI: 10.1016/j.colsurfb.2021.111935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
Silver nanoparticles (AgNPs) could be employed in the combat against COVID-19, yet are associated with toxicities. In this study, biogenic and biocompatible AgNPs using the agro-waste, non-edible Hibiscus sabdariffa stem were synthesized. Under optimized reaction conditions, synthesized green AgNPs were crystalline, face cubic centered, spherical with a diameter of around 17 nm and a surface charge of -20 mV. Their murine lethal dose 50 (LD50) was 4 folds higher than the chemical AgNPs. Furthermore, they were more murine hepato- and nephro-tolerated than chemical counterparts due to activation of Nrf-2 and HO-1 pathway. They exerted an apoptotic anti-ovarian cancer activity with IC50 value 6 times more than the normal cell line. Being functionalized with polydopamine and conjugated to either moxifloxacin or gatifloxacin, the conjugates exerted an augmented antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii biofilms that was significantly higher than antibiotic alone or functionalized AgNPs suggesting a synergistic activity. In conclusion, this study introduced a facile one-pot synthesis of biogenic and biocompatible AgNPs with preferential anti-cancer activity and could be utilized as antibiotic delivery system for a successful eradication of Gram-negative biofilms.
Collapse
Affiliation(s)
- Mohamed G Aboelmaati
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wafaa E Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University of Science and Technology, Gamasa, Mansoura, 11152, Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Amr M Abdelhameed
- Institute of Global Public Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, Cairo, 11835, Egypt
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
23
|
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. MATERIALS HORIZONS 2021; 8:1618-1633. [PMID: 34846495 DOI: 10.1039/d0mh01985b] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun J, Tan H, Liu H, Jin D, Yin M, Lin H, Qu X, Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci 2021; 8:6946-6956. [PMID: 32996923 DOI: 10.1039/d0bm01213k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a growing demand to develop sprayable hydrogel adhesives with rapid-forming and antibacterial abilities to instantly seal open wounds and combat pathogen infection. Herein, we propose to design a polydopamine nanoparticle (PDA NP) coupled PEG hydrogel that can quickly solidify via an amidation reaction after spraying as well as tightly binding PDA NPs to deliver reactive oxygen species (ROS) and induce a photothermal effect for bactericidal activity, and provide a hydrophilic surface for antifouling activity. The molecular structure of the 4-arm-PEG-NHS precursor was regulated to increase its reactivity with 4-arm-PEG-NH2, which thus shortened the gelation time of the PEG adhesive to 1 s to allow a fast solidification after being sprayed. The PEG-NHS precursor also provided covalent binding with tissue and PDA NPs. The reduced PDA NPs have redox activity to convey electrons to oxygen to generate ROS (H2O2), thus endowing the hydrogel with ROS dependent antibacterial ability. Moreover, NIR irradiation can accelerate the ROS release because of the photothermal effect of PDA NPs. In vitro tests demonstrated that H2O2 and the NIR-photothermal effect synergistically induced a fast bacterial killing, and an in vivo anti-infection test also proved the effectiveness of PEG-PDA. The sprayable PEG-PDA hydrogel adhesive, with rapid-forming performance and a dual bactericidal mechanism, may be promising for sealing large-scale and acute wound sites or invisible bleeding sites, and protect them from pathogen infection.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
25
|
Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9816594. [PMID: 34041494 PMCID: PMC8125200 DOI: 10.34133/2021/9816594] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Although photothermal therapy (PTT) with the assistance of nanotechnology has been considered as an indispensable strategy in the biomedical field, it still encounters some severe problems that need to be solved. Excessive heat can induce treated cells to develop thermal resistance, and thus, the efficacy of PTT may be dramatically decreased. In the meantime, the uncontrollable diffusion of heat can pose a threat to the surrounding healthy tissues. Recently, low-temperature PTT (also known as mild PTT or mild-temperature PTT) has demonstrated its remarkable capacity of conquering these obstacles and has shown excellent performance in bacterial elimination, wound healing, and cancer treatments. Herein, we summarize the recently proposed strategies for achieving low-temperature PTT based on nanomaterials and introduce the synthesis, characteristics, and applications of these nanoplatforms. Additionally, the combination of PTT and other therapeutic modalities for defeating cancers and the synergistic cancer therapeutic effect of the combined treatments are discussed. Finally, the current limitations and future directions are proposed for inspiring more researchers to make contributions to promoting low-temperature PTT toward more successful preclinical and clinical disease treatments.
Collapse
Affiliation(s)
- Xiulin Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
26
|
Singh I, Dhawan G, Gupta S, Kumar P. Recent Advances in a Polydopamine-Mediated Antimicrobial Adhesion System. Front Microbiol 2021; 11:607099. [PMID: 33510726 PMCID: PMC7835282 DOI: 10.3389/fmicb.2020.607099] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The drug resistance developed by bacteria during antibiotic treatment has been a call to action for researchers and scientists across the globe, as bacteria and fungi develop ever increasing resistance to current drugs. Innovative antimicrobial/antibacterial materials and coatings to combat such infections have become a priority, as many infections are caused by indwelling implants (e.g., catheters) as well as improving postsurgical function and outcomes. Pathogenic microorganisms that can exist either in planktonic form or as biofilms in water-carrying pipelines are one of the sources responsible for causing water-borne infections. To combat this, researchers have developed nanotextured surfaces with bactericidal properties mirroring the topographical features of some natural antibacterial materials. Protein-based adhesives, secreted by marine mussels, contain a catecholic amino acid, 3,4-dihydroxyphenylalanine (DOPA), which, in the presence of lysine amino acid, empowers with the ability to anchor them to various surfaces in both wet and saline habitats. Inspired by these features, a novel coating material derived from a catechol derivative, dopamine, known as polydopamine (PDA), has been designed and developed with the ability to adhere to almost all kinds of substrates. Looking at the immense potential of PDA, this review article offers an overview of the recent growth in the field of PDA and its derivatives, especially focusing the promising applications as antibacterial nanocoatings and discussing various antimicrobial mechanisms including reactive oxygen species-mediated antimicrobial properties.
Collapse
Affiliation(s)
- Indu Singh
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Gagan Dhawan
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Seema Gupta
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
27
|
Xu Z, Zhang C, Wang X, Liu D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS APPLIED BIO MATERIALS 2021; 4:3985-3999. [DOI: 10.1021/acsabm.0c01485] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiwen Xu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Scutera S, Argenziano M, Sparti R, Bessone F, Bianco G, Bastiancich C, Castagnoli C, Stella M, Musso T, Cavalli R. Enhanced Antimicrobial and Antibiofilm Effect of New Colistin-Loaded Human Albumin Nanoparticles. Antibiotics (Basel) 2021; 10:57. [PMID: 33430076 PMCID: PMC7827731 DOI: 10.3390/antibiotics10010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria (GNB), such as Acinetobacter and Klebsiella, are responsible for severe hospital-acquired infections. Colistin, despite its toxicity and low tissue penetration, is considered the last resort antibiotic against these microorganisms. Of concern, the use of Colistin has recently been compromised by the emergence of Colistin resistance. Herein, we developed a new formulation consisting of multifunctional chitosan-coated human albumin nanoparticles for the delivery of Colistin (Col/haNPs). Col/haNPs were in vitro characterized for encapsulation efficiency, drug release, stability and cytotoxicity and were evaluated for antibacterial activity against MDR GNB (Acinetobacter baumannii and Klebsiella pneumoniae). Col/haNPs showed sizes lower than 200 nm, high encapsulation efficiency (98.65%) and prolonged in vitro release of Colistin. The safety of the nanoformulation was demonstrated by a negligible cytotoxicity on human fibroblasts and hemolytic activity. Col/haNPs evidenced a high antibacterial effect with a significant decrease in MIC values compared to free Colistin, in particular against Col-resistant strains with a pronounced decline of bacterial growth over time. Moreover, Col/haNPs exhibited an inhibitory effect on biofilm formation that was 4 and 60 fold higher compared to free Colistin, respectively for Colistin susceptible and resistant A. baumannii. Our findings suggest that Col/haNPs could represent a promising Colistin nanocarrier with high antimicrobial activity on MDR GNB.
Collapse
Affiliation(s)
- Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (S.S.); (R.S.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (M.A.); (F.B.); (C.B.); (R.C.)
| | - Rosaria Sparti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (S.S.); (R.S.)
| | - Federica Bessone
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (M.A.); (F.B.); (C.B.); (R.C.)
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Chiara Bastiancich
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (M.A.); (F.B.); (C.B.); (R.C.)
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Maurizio Stella
- Burn Center, CTO Hospital, Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (S.S.); (R.S.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (M.A.); (F.B.); (C.B.); (R.C.)
| |
Collapse
|
29
|
Facile Synthesis of Long-Term Stable Silver Nanoparticles by Kaempferol and Their Enhanced Antibacterial Activity Against Escherichia coli and Staphylococcus aureus. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01874-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Zhao Y, Zhu Y, Yang G, Xia L, Yu F, Chen C, Zhang L, Cao H. A pH/H 2O 2 dual triggered nanoplatform for enhanced photodynamic antibacterial efficiency. J Mater Chem B 2021; 9:5076-5082. [PMID: 34120155 DOI: 10.1039/d1tb00441g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection and biofilms cause non-healing chronic wounds and threaten human health. Although antibiotics still play an irreplaceable role to treat infectious diseases in clinics, increasing attention has been paid to the problem of multidrug resistance (MDR). As a novel strategy to deal with bacterial infection, photodynamic antimicrobial therapy (PDAT) has shown promising potential to reduce bacterial infection, and stimuli-responsive nanomaterials have been shown to enhance the antibacterial efficiency and postpone the emergence of drug-resistant bacteria. In this work, we developed a bacterial microenvironment-responsive nanoplatform to eliminate bacteria and bacterial biofilms under 650 nm laser irradiation. Reversible addition-fragmentation chain transfer (RAFT) polymerization was applied to synthesize an H2O2 responsive block copolymer of POEGMA-b-PBMA, and the antibacterial drug of porphyrin TAPP was loaded to form nanoparticles (PT) by a co-assembled approach. At the infection area with overexpressed peroxide, nanoparticles were disintegrated due to the cleaved boronic ester leading to the release of TAPP. Furthermore, the released TAPP became protonated in the acidic infection area (pH = 5.5) and then enhanced its photodynamic antibacterial efficacy by producing higher singlet oxygen (1O2) levels under light irradiation. Both in vitro and in vivo antimicrobial and biofilm elimination experiments demonstrated that the responsive nanoplatform combined with PDAT has tremendous potential for the treatment of infections.
Collapse
Affiliation(s)
- Ying Zhao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yucheng Zhu
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Guoliang Yang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Xia
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Fan Yu
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangshun Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hongliang Cao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
31
|
Li J, Sun W, Yang Z, Gao G, Ran HH, Xu KF, Duan QY, Liu X, Wu FG. Rational Design of Self-Assembled Cationic Porphyrin-Based Nanoparticles for Efficient Photodynamic Inactivation of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54378-54386. [PMID: 33226224 DOI: 10.1021/acsami.0c15244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial infection has become an urgent health problem in the world. Especially, the evolving resistance of bacteria to antibiotics makes the issue more challenging, and thus new treatments to fight these infections are needed. Antibacterial photodynamic therapy (aPDT) is recognized as a novel and promising method to inactivate a wide range of bacteria with few possibilities to develop drug resistance. However, the photosensitizers (PSs) are not effective against Gram-negative bacteria in many cases. Herein, we use conjugated meso-tetra(4-carboxyphenyl)porphine (TCPP) and triaminoguanidinium chloride (TG) to construct self-assembled cationic TCPP-TG nanoparticles (NPs) for efficient bacterial inactivation under visible light illumination. The TCPP-TG NPs can rapidly adhere to both Gram-negative and Gram-positive bacteria and display promoted singlet oxygen (1O2) generation compared with TCPP under light irradiation. The high local positive charge density of TCPP-TG NPs facilitates the interaction between the NPs and bacteria. Consequently, the TCPP-TG NPs produce an elevated concentration of local 1O2 under light irradiation, resulting in an extraordinarily high antibacterial efficiency (99.9999% inactivation of the representative bacteria within 4 min). Furthermore, the TCPP-TG NPs show excellent water dispersity and stability during 4 months of storage. Therefore, the rationally designed TCPP-TG NPs are a promising antibacterial agent for effective aPDT.
Collapse
Affiliation(s)
- Junying Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|