1
|
Xu Z, Han S, Guan S, Zhang R, Chen H, Zhang L, Han L, Tan Z, Du M, Li T. Preparation, design, identification and application of self-assembly peptides from seafood: A review. Food Chem X 2024; 23:101557. [PMID: 39007120 PMCID: PMC11239460 DOI: 10.1016/j.fochx.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Hydrogels formed by self-assembling peptides with low toxicity and high biocompatibility have been widely used in food and biomedical fields. Seafood contains rich protein resources and is also one of the important sources of natural bioactive peptides. The self-assembled peptides in seafood have good functional activity and are very beneficial to human health. In this review, the sequence of seafood self-assembly peptide was introduced, and the preparation, screening, identification and characterization. The rule of self-assembled peptides was elucidated from amino acid sequence composition, amino acid properties (hydrophilic, hydrophobic and electric), secondary structure, interaction and peptide properties (hydrophilic and hydrophobic). It was introduced that the application of hydrogels formed by self-assembled peptides, which lays a theoretical foundation for the development of seafood self-assembled peptides in functional foods and the application of biological materials.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shiying Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Shuang Guan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Rui Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| |
Collapse
|
2
|
Dao UH, Lamphun JN, Tongdonyod S, Taya S, Phongthai S, Klangpetch W. Optimization of High-Pressure Processing for Microbial Inactivation in Pigmented Rice Grass Juice and Quality Impact Assessment during Refrigerated Storage. Foods 2024; 13:2995. [PMID: 39335923 PMCID: PMC11431240 DOI: 10.3390/foods13182995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Pigmented rice grass juice (RGJ) is a good source of bioactive compounds, but fresh juice has a relatively short shelf life of only 7 days at 4 °C. The objectives of this study were to determine the optimal growth stage of pigmented rice grass, investigate the optimal condition of high-pressure processing (HPP) for bacterial inactivation in inoculated RGJ using response surface methodology (RSM), and evaluate quality changes in uninoculated HPP-treated juice during storage at 4 °C compared with heat-treated (85 °C/10 min) and untreated samples. Results revealed that the optimal growth stage of rice grass was 9 days with the highest total anthocyanin content of 158.92 mg/L. The optimal condition of HPP was determined to be 612 MPa, 11 min, and 36 °C, and inactivated Escherichia coli K12 and Listeria innocua with 6.43 and 5.02 log reductions, respectively, meeting FDA regulations. The lethality of bacteria after HPP treatment can be explained by damage to the cell membrane and the leakage of intracellular constituents such as protein and nucleic acid. During 12 weeks of storage at 4 °C, total plate counts and yeast and mold counts in uninoculated HPP-treated juice were not detected. Moreover, HPP did not significantly change phytochemical properties (p < 0.05), caused a minor impact on physicochemical properties of RGJ, and maintained the durability of juice samples during storage. Analysis of the phytochemical profile revealed that HPP treatment could preserve most of the phenolic compounds in RGJ and especially increase the contents of protocatechuic acid, 4-hydroxybenzoic acid, syringic acid, transcinnamic acid, isorhamnetin-3-o-glucoside, quercetin, and cyanidin-3-glucoside (p < 0.05). Overall, HPP is a potential pasteurization technique for microbial inactivation and nutritional preservation for rice grass juice.
Collapse
Affiliation(s)
- Uyen Ha Dao
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (U.H.D.); (S.T.); (S.P.)
| | - Jitlada Na Lamphun
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (U.H.D.); (S.T.); (S.P.)
| | - Sitthidat Tongdonyod
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (U.H.D.); (S.T.); (S.P.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suphat Phongthai
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (U.H.D.); (S.T.); (S.P.)
- Cluster Research of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wannaporn Klangpetch
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (U.H.D.); (S.T.); (S.P.)
- Cluster Research of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Zhu J, Wang H, Liu S, Miao L, Dong H, Tong X, Jiang L. Complexes of soybean protein fibrils and chlorogenic acid: Interaction mechanism and antibacterial activity. Food Chem 2024; 452:139551. [PMID: 38723572 DOI: 10.1016/j.foodchem.2024.139551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study explored the mechanism of interaction between chlorogenic acid (CA) and protein fibrils (PF) as well as the effects of varying the CA/PF concentration ratio on antibacterial activity. Analysis of various parameters, such as ζ-potential, thioflavin T fluorescence intensity, surface hydrophobicity, and free sulfhydryl groups, revealed that the interaction between PF and CA altered the structure of PF. Fluorescence analysis revealed that hydrogen bonding and hydrophobic interactions were the primary interaction forces causing conformational rearrangement, resulting in a shorter, more flexible, and thicker fibril structure, as observed through transmission electron microscopy. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and X-ray diffraction analyses revealed that the characteristic fibril structure was destroyed when the CA/PF ratio exceeded 0.05. Notably, the CA-PF complexes inhibited the growth of Escherichia coli and Staphylococcus aureus and also exhibited antioxidant activity. Overall, this study expands the application prospects of CA and PF in the food industry.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liming Miao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongxia Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
4
|
Wiita EG, Toprakcioglu Z, Jayaram AK, Knowles TPJ. Formation of Nanofibrillar Self-Healing Hydrogels Using Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46167-46176. [PMID: 39171944 PMCID: PMC11378157 DOI: 10.1021/acsami.4c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The rise of drug-resistant microorganisms has prompted the development of innovative strategies with the aim of addressing this challenge. Among the alternative approaches gaining increased attention are antimicrobial peptides (AMPs), a group of peptides with the ability to combat microbial pathogens. Here, we investigated a small peptide, KLVFF, derived from the Alzheimer's amyloid-β (Aβ) protein. While Aβ has been associated with the development of neurodegenerative diseases, the core part of the Aβ protein, namely the Aβ 16-20 fragment, has also been exploited to obtain highly functional biomaterials. In this study we found that KLVFF is capable of self-assembling into a fibrillar network to form a self-healing hydrogel. Moreover, this small peptide can undergo a transition from a gel to a liquid state following application of shear stress, in a reversible manner. As an AMP, this material exhibited both antibacterial and antifungal properties while remaining highly biocompatible and noncytotoxic toward mammalian cells. The propensity of the KLVFF hydrogel to rapidly assemble into highly ordered macroscopic structures makes it an ideal candidate for biomedical applications necessitating antimicrobial activity, such as wound healing.
Collapse
Affiliation(s)
- Elizabeth G Wiita
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Akhila K Jayaram
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
5
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
6
|
Wang Y, Zhang Y, Su R, Wang Y, Qi W. Antimicrobial therapy based on self-assembling peptides. J Mater Chem B 2024; 12:5061-5075. [PMID: 38726712 DOI: 10.1039/d4tb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of drug-resistant microorganisms has threatened global health, and microbial infections have severely limited the use of medical materials. For example, the attachment and colonization of pathogenic bacteria to medical implant materials can lead to wound infections, inflammation and complications, as well as implant failure, shortening their lifespan and even resulting in patient death. In the era of antibiotic resistance, antimicrobial drug discovery needs to prioritize unconventional therapies that act on new targets or adopt new mechanisms. In this regard, supramolecular antimicrobial peptides have emerged as attractive therapeutic platforms, both as bactericides for combination antibiotics and as delivery vehicles. By taking advantage of their programmable intermolecular and intramolecular interactions, peptides can be modified to form higher-order structures (including nanofibers and nanoparticles) with unique functionality. This paper begins with an analysis of the relationship between peptide self-assembly and antimicrobial activity, describes in detail the research and development of various self-assembled antimicrobial peptides in recent years, and finally explores different combinatorial strategies for self-assembling antimicrobial peptides.
Collapse
Affiliation(s)
- Yuqi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yexi Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Chen H, Liu Z, Li L, Cai X, Xiang L, Wang S. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5526-5541. [PMID: 38457666 DOI: 10.1021/acs.jafc.3c09237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Zhiyu Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liheng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Leiwen Xiang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
8
|
Lin T, Lai Y, Jiang G, Chen X, Hou L, Zhao S. pH-Triggered visual detection of Escherichia coli based on the co-assembly of bacitracin and thymolphthalein. Chem Commun (Camb) 2023; 59:12986-12989. [PMID: 37791572 DOI: 10.1039/d3cc04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A novel probe for bacteria was simply synthesized through the solvent-induced co-assembly of bacitracin (AMP) and thymolphthalein (TP) without complicated modification. Combining with aptamer-Fe3O4, AMP/TP nanoparticles were used for the colorimetric detection of Escherichia coli with good sensitivity through the NaOH-triggered blue color and a smartphone-based App.
Collapse
Affiliation(s)
- Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yunping Lai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Gaoyan Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Xinlian Chen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
9
|
Wang F, Xia W, Zhang M, Wu R, Song X, Hao Y, Feng Y, Zhang L, Li D, Kang W, Liu C, Liu L. Engineering of antimicrobial peptide fibrils with feedback degradation of bacterial-secreted enzymes. Chem Sci 2023; 14:10914-10924. [PMID: 37829030 PMCID: PMC10566480 DOI: 10.1039/d3sc01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Proteins and peptides can assemble into functional amyloid fibrils with distinct architectures. These amyloid fibrils can fulfil various biological functions in living organisms, and then be degraded. By incorporating an amyloidogenic segment and enzyme-cleavage segment together, we designed a peptide (enzyme-cleavage amyloid peptides (EAP))-based functional fibril which could be degraded specifically by gelatinase. To gain molecular insights into the assembly and degradation of EAP fibrils, we determined the atomic structure of the EAP fibril using cryo-electron microscopy. The amyloidogenic segment of EAP adopted a β-strand conformation and mediated EAP-fibril formation mainly via steric zipper-like interactions. The enzyme-cleavage segment was partially involved in self-assembly, but also exhibited high flexibility in the fibril structure, with accessibility to gelatinase binding and degradation. Moreover, we applied the EAP fibril as a tunable scaffold for developing degradable self-assembled antimicrobial fibrils (SANs) by integrating melittin and EAP together. SANs exhibited superior activity for killing bacteria, and significantly improved the stability and biocompatibility of melittin. SANs were eliminated automatically by the gelatinase secreted from targeted bacteria. Our work provides a new strategy for rational design of functional fibrils with a feedback regulatory loop for optimizing the biocompatibility and biosafety of designed fibrils. Our work may aid further developments of "smart" peptide-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- College of Aeronautical Engineering, Jiangsu Aviation Vocational and Technical College Zhenjiang Jiangsu 212134 China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Rongrong Wu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaolu Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yun Hao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University Shanghai 200030 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Boao Research Hospital) Hainan 571434 China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Boao Research Hospital) Hainan 571434 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Shanghai 200032 China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
10
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
11
|
Jelodari S, Daemi H, Mohammadi P, Verdi J, J Al-Awady M, Ai J, Azami M. Assessment of the Efficacy of an LL-37-Encapsulated Keratin Hydrogel for the Treatment of Full-Thickness Wounds. ACS APPLIED BIO MATERIALS 2023. [PMID: 37224450 DOI: 10.1021/acsabm.2c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wound healing remains a burdensome healthcare problem due to moisture loss and bacterial infection. Advanced hydrogel dressings can help to resolve these issues by assisting and accelerating regenerative processes such as cell migration and angiogenesis because of the similarities between their composition and structure with natural skin. In this study, we aimed to develop a keratin-based hydrogel dressing and investigate the impact of the delivery of LL-37 antimicrobial peptide using this hydrogel in treating full-thickness rat wounds. Therefore, oxidized (keratose) and reduced (kerateine) keratins were utilized to prepare 10% (w/v) hydrogels with different ratios of keratose and kerateine. The mechanical properties of these hydrogels with compressive modulus of 6-32 kPa and tan δ <1 render them suitable for wound healing applications. Also, sustained release of LL-37 from the keratin hydrogel was achieved, which can lead to superior wound healing. In vitro studies confirmed that LL-37 containing 25:75% of keratose/kerateine (L-KO25:KN75) would result in significant fibroblast proliferation (∼85% on day 7), adhesion (∼90 cells/HPF), and migration (73% scratch closure after 12 h and complete closure after 24 h). Also, L-KO25:KN75 is capable of eradicating both Gram-negative and Gram-positive bacteria after 18 h. According to in vivo assessment of L-KO25:KN75, wound closure at day 21 was >98% and microvessel density (>30 vessels/HPF at day 14) was significantly superior in comparison to other treatment groups. The mRNA expression of VEGF and IL-6 was also increased in the L-KO25:KN75-treated group and contributed to proper wound healing. Therefore, the LL-37-containing keratin hydrogel ameliorated wound closure, and also angiogenesis was enhanced as a result of LL-37 delivery. These results suggested that the L-KO25:KN75 hydrogel could be a sustainable substitute for skin tissue regeneration in medical applications.
Collapse
Affiliation(s)
- Sahar Jelodari
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Parvaneh Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mohammed J Al-Awady
- Department of Chemistry, University of Western Ontario, Ontario N6A 3K7, Canada
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
- Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran 1417755469, Iran
| |
Collapse
|
12
|
C-terminal modification of a de novo designed antimicrobial peptide via capping of macrolactam rings. Bioorg Chem 2022; 130:106251. [DOI: 10.1016/j.bioorg.2022.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
13
|
Chen H, Chen X, Chen X, Lin S, Cheng J, You L, Xiong C, Cai X, Wang S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hou Y, Tan T, Guo Z, Ji Y, Hu J, Zhang Y. Gram-selective antibacterial peptide hydrogels. Biomater Sci 2022; 10:3831-3844. [PMID: 35678287 DOI: 10.1039/d2bm00558a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human microbiome plays fundamental roles in human health and disease. However, widely used broad-spectrum antibiotics severely disrupt human-related microbial communities, eventually leading to resistant bacteria, posing a growing threat to global medical health. Antimicrobial peptides (AMPs) are promising antimicrobial agents that barely cause bacterial resistance. Excellent broad-spectrum antimicrobial activities have been achieved using hydrogels self-assembled from AMPs, but there is still a lack of AMP hydrogels that can target Gram-positive and Gram-negative bacteria. Herein, several hydrogels self-assembled from AMPs, termed IK1, IK3, and IK4, were designed and synthesized. In vitro antibacterial results indicated that the IK1 and IK4 hydrogels specifically targeted Gram-positive and Gram-negative bacteria, respectively, while the IK3 hydrogel targeted both Gram-positive and Gram-negative bacteria. The desired broad-spectrum or Gram-selective AMP hydrogels are believed to be obtained through the rational design of the hydrophilicity, hydrophobicity, and charge properties of the peptide molecules. Good in vivo Gram-selective antibacterial properties and the ability to promote wound healing have been demonstrated via treating mouse wound models with these AMP hydrogels. We believe that these Gram-selective AMP hydrogels could potentially have important applications in treating common recurring infections.
Collapse
Affiliation(s)
- Yangqian Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Tan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Ji
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
15
|
Pohl C, Effantin G, Kandiah E, Meier S, Zeng G, Streicher W, Segura DR, Mygind PH, Sandvang D, Nielsen LA, Peters GHJ, Schoehn G, Mueller-Dieckmann C, Noergaard A, Harris P. pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nat Commun 2022; 13:3162. [PMID: 35672293 PMCID: PMC9174238 DOI: 10.1038/s41467-022-30462-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Self-assembly and fibril formation play important roles in protein behaviour. Amyloid fibril formation is well-studied due to its role in neurodegenerative diseases and characterized by refolding of the protein into predominantly β-sheet form. However, much less is known about the assembly of proteins into other types of supramolecular structures. Using cryo-electron microscopy at a resolution of 1.97 Å, we show that a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembles into helical non-amyloid fibrils. The in vitro anti-microbial activity was determined and shown to be enhanced compared to the wildtype. Plectasin contains a cysteine-stabilised α-helix-β-sheet structure, which remains intact upon fibril formation. Two protofilaments form a right-handed protein fibril. The fibril formation is reversible and follows sigmoidal kinetics with a pH- and concentration dependent equilibrium between soluble monomer and protein fibril. This high-resolution structure reveals that α/β proteins can natively assemble into fibrils. Here the authors report the cryo-EM structure of a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembling in a pH- and concentration dependent manner into helical non-amyloid fibrils. The fibrils formation is reversible, and follows a sigmoidal kinetics. The fibrils adopt a right-handed helical superstructure composed by two protofilaments, stabilized by an outer hydrophobic ring and an inner hydrophobic centre. These findings reveal that α/β proteins can natively assemble into fibrils.
Collapse
|
16
|
Chen H, Cai X, Cheng J, Wang S. Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. The Potential of Modified and Multimeric Antimicrobial Peptide Materials as Superbug Killers. Front Chem 2022; 9:795433. [PMID: 35083194 PMCID: PMC8785218 DOI: 10.3389/fchem.2021.795433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are found in nearly all living organisms, show broad spectrum antibacterial activity, and can modulate the immune system. Furthermore, they have a very low level of resistance induction in bacteria, which makes them an ideal target for drug development and for targeting multi-drug resistant bacteria 'Superbugs'. Despite this promise, AMP therapeutic use is hampered as typically they are toxic to mammalian cells, less active under physiological conditions and are susceptible to proteolytic degradation. Research has focused on addressing these limitations by modifying natural AMP sequences by including e.g., d-amino acids and N-terminal and amino acid side chain modifications to alter structure, hydrophobicity, amphipathicity, and charge of the AMP to improve antimicrobial activity and specificity and at the same time reduce mammalian cell toxicity. Recently, multimerisation (dimers, oligomer conjugates, dendrimers, polymers and self-assembly) of natural and modified AMPs has further been used to address these limitations and has created compounds that have improved activity and biocompatibility compared to their linear counterparts. This review investigates how modifying and multimerising AMPs impacts their activity against bacteria in planktonic and biofilm states of growth.
Collapse
Affiliation(s)
- Tamara Matthyssen
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Wenyi Li
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - James A. Holden
- Centre for Oral Health Research, The University of Melbourne, Melbourne Dental School, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Jason C. Lenzo
- Centre for Oral Health Research, The University of Melbourne, Melbourne Dental School, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Sara Hadjigol
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Wang Z, Song X, Cui Y, Cheng K, Tian X, Dong M, Liu L. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release. J Colloid Interface Sci 2021; 593:142-151. [PMID: 33744525 DOI: 10.1016/j.jcis.2021.02.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/24/2023]
Abstract
The scaffold materials with good mechanical and structural properties, controlled drug release performance, biocompatibility and biodegradability are important tenet in tissue engineering. In this work, the functional core-shell nanofibers with poly(ε-caprolactone) (PCL) as shell and silk fibroin heavy chain (H-fibroin) as core were constructed by emulsion electrospinning. The transmission electron microscopy confirmed that the nanofiber with core-shell structure were successfully prepared. The constructed nanofiber materials were characterized by the several characterization methods. The results showed that ethanol treatment could induce the formation of β-sheet of H-fibroin in composite nanofibers, thus improving the mechanical properties of PCL/H-fibroin nanofiber scaffold. In addition, we evaluated the potential of PCL/H-fibroin nanofiber membrane as a biological scaffold. It was found that PCL/H-fibroin nanofiber scaffold was more conducive to cell adhesion and proliferation with the increment of H-fibroin. Finally, in vitro drug release presented that PCL/H-fibroin core-shell nanofibers could effectively reduce the prophase burst of drug molecules and show the sustained drug release. The PCL/H-fibroin nanofiber scaffolds constructed in this work have good mechanical properties, biocompatibility, and display good potential in biomedical applications, such as drug carriers, tissue engineering and wound dressings, etc.
Collapse
Affiliation(s)
- Zengkai Wang
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolu Song
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Cui
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Kai Cheng
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lei Liu
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Gokula RP, Mahato J, Tripathi A, Singh HB, Chowdhury A. Self-Assembly of Nicotinic Acid-Conjugated Selenopeptides into Mesotubes. ACS APPLIED BIO MATERIALS 2021; 4:1912-1919. [PMID: 35014460 DOI: 10.1021/acsabm.0c01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of controlling the morphology for designing advanced supramolecular architectures by tuning the molecular motif at the elemental level has been rarely carried out. Here, we report the synthesis of a nicotinic acid-conjugated selenopeptide, which induced the formation of an unbranched mesoscale elongated tubular morphology. We rationally designed two additional peptides to find out the decisive role played by the nitrogen atom (in nicotinic acid) and selenium (in the peptide backbone) toward the formation of the mesotube. We found that the peptide, devoid of nitrogen, forms a fibrillar structure, whereas the peptide without selenium self-assembled into a cylindrical filled rodlike morphology. Here, we report an entirely different class of peptide inspired from the selenopeptide chemistry that forms a tubular structure and unambiguously establish that both nicotinic acid and selenium are essential toward the formation of such mesotubes.
Collapse
Affiliation(s)
- Ram P Gokula
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|