1
|
Lin P, Gu H, Zhuang X, Wang F, Hu X. Controlled Release of Curcumin and Hypocrellin A from Electrospun Poly(l-Lactic Acid)/Silk Fibroin Nanofibers for Enhanced Cancer Cell Inhibition. ACS APPLIED BIO MATERIALS 2024; 7:5423-5436. [PMID: 39069738 DOI: 10.1021/acsabm.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.
Collapse
Affiliation(s)
- Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
2
|
Li Q, Liu C, Xing D. Carbon dots-facilitated on-demand dissolution of Ca-alginate hydrogel via site-specific mineralization for wound healing. J Nanobiotechnology 2024; 22:465. [PMID: 39095807 PMCID: PMC11297779 DOI: 10.1186/s12951-024-02729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
On-demand dissolution of hydrogels has shown much potential in easy and pain-free removal of wound dressings. This work firstly describes a type of carbon dots (CDs) for dissolving Ca-alginate hydrogel via site-specific mineralization method. The CDs were characterized by two features, which included presence of primary/secondary amine groups and generation of calcium crystals with Ca2+. Especially, the amount of primary/secondary amine groups on CDs played key role in determining whether hydrogel could be dissolved. When there were sufficient primary/secondary amine groups, the mineralization occurred on CDs rather than alginates due to the hydrogen bond between primary/secondary amine and carboxyl of alginates. Thereby, this promoted the gel-sol transition through Ca2+ capture from the hydrogels. Moreover, antibacterial test revealed Ca2+ capture from cell walls, while in vivo test revealed hypoxia relief due to porous structures of the renewed hydrogels. Overall, CDs with sufficient primary/secondary amine groups could dissolve Ca-alginate hydrogel through site-specific mineralization method, accompanying by additional functions of antibacterial and hypoxia relief.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
- Qingdao Cancer Institute, Qingdao, 266071, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Jaisankar E, Azarudeen RS, Thirumarimurugan M. Nanofibers Embedded with Nanoparticles as Carriers for the Controlled Release of Anticancer Drug: Promoting the Apoptosis of Breast Cancer Cell Line and Growth Inhibition of Microbial Strains. ACS APPLIED BIO MATERIALS 2024; 7:4323-4338. [PMID: 38867473 DOI: 10.1021/acsabm.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.
Collapse
Affiliation(s)
- Edumpan Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | - Raja Sulaiman Azarudeen
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | | |
Collapse
|
4
|
Ni W, Zhou G, Chen Y, Li X, Yan T, Li Y. Fabrication of antibacterial poly (L-lactic acid)/tea polyphenol blend films via reactive blending using SG copolymer. Int J Biol Macromol 2024; 262:130130. [PMID: 38354921 DOI: 10.1016/j.ijbiomac.2024.130130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/05/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Poly (L-lactic acid) (PLLA) composite materials with both excellent antibacterial properties and mechanical properties are highly desirable for both food packaging and biomedical applications. However, a facile method to prepare transparent PLLA composite films with both excellent antibacterial and mechanical properties is still lacking. In this work, blend films based on PLLA, tea polyphenols (TP) and poly (styrene-co-glycidyl methacrylate) (SG) copolymers (PLLA/TP/SG) were prepared by melt blending using twin screw extruder. The blend films showed high transparency with a brownish color originated from tea polyphenols. Both SEM and DSC analyses confirmed that the blends are thermodynamically compatible. GPC and mechanical assessments demonstrated that the PLLA/TP binary blends exhibit reduced molecular weight and compromised mechanical properties, compared to neat PLLA. However, incorporating SG copolymer resulted in increased molecular weight and improved mechanical properties for the PLLA/TP/SG blends. The FT-IR spectra exhibited a shift to lower wavenumber for the absorption peak associated with the benzene ring on TPs after blending with PLLA and SG, indicating the occurrence of transesterification between PLLA and TP. Plate coating studies revealed that the PLLA/TP/SG blends with TP incorporation at 5 wt% exhibited a bacteriostatic rate of 99.99 % against Staphylococcus aureus and Escherichia coli. Overall, our study reveals that the PLLA/TP/SG blend films exhibit excellent antibacterial properties coupled with good mechanical properties, rendering them a promising candidate for antibacterial packaging materials.
Collapse
Affiliation(s)
- Weibiao Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yihang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xianlu Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Tingzi Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Yao H, Wang J, Deng Y, Li Z, Wei J. Osteogenic and antibacterial PLLA membrane for bone tissue engineering. Int J Biol Macromol 2023; 247:125671. [PMID: 37406896 DOI: 10.1016/j.ijbiomac.2023.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Insufficient bone regeneration and bacterial infection are two major concerns of bone repair materials. Poly-L-lactic acid (PLLA) have been widely used in bone tissue engineering (BTE), however, lack of osteogenic and antibacterial properties have greatly limit its clinical application. Herein, PLLA membrane was firstly treated with polydopamine (PDA), and then modified with ε-polylysine (ε-PL) and alginate (ALG) via layer-by-layer method. The (ε-PL/ALG)n composite layer coated PLLA (PLLA@(ε-PL/ALG)n) could facilitates the adhesion and osteoblast differentiation of MC3T3-E1 cells. Furthermore, PLLA@(ε-PL/ALG)n presents an effective antibacterial efficacy against S. aureus and E. coli, and the bacterial survival rates of S. aureus and E. coli on PLLA@(ε-PL/ALG)10 were 21.5 ± 3.5 % and 13 ± 2.1 %, respectively. This work provides a promising method to design PLLA materials with osteogenic and antibacterial activity simultaneously. Furthermore, the method is also an optional choice to construct multifunctional coatings on the other substrate.
Collapse
Affiliation(s)
- Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China.
| |
Collapse
|
6
|
Sun M, Chen S, Ling P, Ma J, Wu S. Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:6. [PMID: 35009955 PMCID: PMC8746433 DOI: 10.3390/nano12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Electrospun nanofiber mats have attracted intense attention as advanced wound dressing materials. The objective of this study was to fabricate methacrylated gelatin (MeGel)/poly(L-lactic acid) (PLLA) hybrid nanofiber mats with an extracellular matrix (ECM) mimicking nanofibrous structure and hydrogel-like properties for potential use as wound dressing materials. MeGel was first synthesized via the methacryloyl substitution of gelatin (Gel), a series of MeGel and PLLA blends with various mass ratios were electrospun into nanofiber mats, and a UV crosslinking process was subsequently utilized to stabilize the MeGel components in the nanofibers. All the as-crosslinked nanofiber mats exhibited smooth and bead-free fiber morphologies. The MeGel-containing and crosslinked nanofiber mats presented significantly improved hydrophilic properties (water contact angle = 0°; 100% wettability) compared to the pure PLLA nanofiber mats (~127°). The swelling ratio of crosslinked nanofiber mats notably increased with the increase of MeGel (143.6 ± 7.4% for PLLA mats vs. 875.0 ± 17.1% for crosslinked 1:1 MeGel/PLLA mats vs. 1135.2 ± 16.0% for crosslinked MeGel mats). The UV crosslinking process was demonstrated to significantly improve the structural stability and mechanical properties of MeGel/PLLA nanofiber mats. The Young's modulus and ultimate strength of the crosslinked nanofiber mats were demonstrated to obviously decrease when more MeGel was introduced in both dry and wet conditions. The biological tests showed that all the crosslinked nanofiber mats presented great biocompatibility, but the crosslinked nanofiber mats with more MeGel were able to notably promote the attachment, growth, and proliferation of human dermal fibroblasts. Overall, this study demonstrates that our MeGel/PLLA blend nanofiber mats are attractive candidates for wound dressing material research and application.
Collapse
Affiliation(s)
- Mingchao Sun
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China;
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China;
| |
Collapse
|
7
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Chen X, Li H, Lu W, Guo Y. Antibacterial Porous Coaxial Drug-Carrying Nanofibers for Sustained Drug-Releasing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1316. [PMID: 34067723 PMCID: PMC8157037 DOI: 10.3390/nano11051316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
The phenomenon of drug burst release is the main problem in the field of drug delivery systems, as it means that a good therapeutic effect cannot be acheived. Nanofibers developed by electrospinning technology have large specific surface areas, high porosity, and easily controlled morphology. They are being considered as potential carriers for sustained drug release. In this paper, we obtained polycaprolactone (PCL)/polylactic acid (PLA) core-shell porous drug-carrying nanofibers by using coaxial electrospinning technology and the nonsolvent-induced phase separation method. Roxithromycin (ROX), a kind of antibacterial agent, was encapsulated in the core layer. The morphology, composition, and thermal properties of the resultant nanofibers were characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Besides this, the in vitro drug release profile was investigated; it showed that the release rate of the prepared coaxial porous nanofibers with two different pore sizes was 30.10 ± 3.51% and 35.04 ± 1.98% in the first 30 min, and became 92.66 ± 3.13% and 88.94 ± 1.58% after 14 days. Compared with the coaxial nonporous nanofibers and nanofibers prepared by uniaxial electrospinning with or without pores, the prepared coaxial porous nanofibers revealed that the burst release was mitigated and the dissolution rate of the hydrophobic drugs was increased. The further antimicrobial activity demonstrated that the inhibition zone diameter of the coaxial nanofibers with two different pore sizes was 1.70 ± 0.10 cm and 1.73 ± 0.23 cm, exhibiting a good antibacterial effect against Staphylococcus aureus. Therefore, the prepared nanofibers with the coaxial porous structures could serve as promising drug delivery systems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghai Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Garkal A, Kulkarni D, Musale S, Mehta T, Giram P. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj04159b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the process of preparation of nanofibers via Es, the design and setup of the instrument, critical parameter optimization, preferable polymers, solvents, characterization techniques, and recent development and biomedical applications of nanofibers.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra, 431136, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| |
Collapse
|