1
|
Kiranmai G, Chameettachal S, Sriya Y, Duin S, Lode A, Gelinsky M, Akkineni AR, Pati F. Recent trends in the development of in vitro3D kidney models. Biofabrication 2025; 17:022010. [PMID: 39993331 DOI: 10.1088/1758-5090/adb999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The kidneys are vital for maintaining bodily homeostasis and are susceptible to various diseases that disrupt their function. Traditionally, research on kidney diseases has relied on animal models and simplistic two-dimensional cell cultures, which do not fully replicate human tissue pathology. To address this, recent advances focus on developing advanced 3D biomimeticin vitromodels using human-derived cells. These models mimic healthy and diseased kidney tissues with specificity, replicating key elements like glomerular and tubular structures through tissue engineering. By closely mimicking human physiology, they provide a promising platform for studying renal disorders, drug-induced nephrotoxicity, and evaluating new therapies. However, the challenges include optimizing scalability, reproducibility, and long-term stability to enhance reliability in research and clinical applications. This review highlights the transformative potential of 3D biomimeticin vitrokidney models in advancing biomedical research and clinical applications. By focusing on human-specific cell cultures and tissue engineering techniques, these models aim to overcome the limitations of conventional animal models and simplistic 2D cell cultures. The review discusses in detail the various types of biomimetic kidney models currently under development, their specific applications, and the innovative approaches used to construct them. It also addresses the challenges and limitations associated with these models for their widespread adoption and reliability in research settings.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Yeleswarapu Sriya
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
2
|
Abu Elella MH, Aamer N, Abdallah HM, López-Maldonado EA, Mohamed YMA, El Nazer HA, Mohamed RR. Novel high-efficient adsorbent based on modified gelatin/montmorillonite nanocomposite for removal of malachite green dye. Sci Rep 2024; 14:1228. [PMID: 38216651 PMCID: PMC10786822 DOI: 10.1038/s41598-024-51321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Shortage of drinking water has gained potential interest over the last few decades. Discharged industrial effluent, including various toxic pollutants, to water surfaces is one of the most serious environmental issues. The adsorption technique has become a widely studied method for the removal of toxic pollutants, specifically synthetic dyes, from wastewater due to its cost-effectiveness, high selectivity, and ease of operation. In this study, a novel gelatin-crosslinked-poly(acrylamide-co-itaconic acid)/montmorillonite (MMT) nanoclay nanocomposites-based adsorbent has been prepared for removing malachite green (MG) dye from an aqueous solution. Modified gelatin nanocomposites were synthesized using a free-radical polymerization technique in the presence and absence of MMT. Various analytical instrumentation: including FTIR, FESEM, XRD, and TEM techniques were used to elucidate the chemical structure and surface morphology of the prepared samples. Using a batch adsorption experiment, Langmuir isotherm model showed that the prepared modified gelatin nanocomposite had a maximum adsorption capacity of 950.5 mg/g using 350 mg/L of MG dye at pH 9 within 45 min. Furthermore, the regeneration study showed good recyclability for the obtained nanocomposite through four consecutive reusable cycles. Therefore, the fabricated gelatin nanocomposite is an attractive adsorbent for MG dye elimination from aqueous solutions.
Collapse
Affiliation(s)
| | - Nema Aamer
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki , Giza, 12622, Egypt
| | - Eduardo A López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP: 22390, Tijuana, Baja California, Mexico
| | - Yasser M A Mohamed
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Hossam A El Nazer
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Zhang R, Zhang D, Sun X, Song X, Yan KC, Liang H. Polyvinyl alcohol/gelatin hydrogels regulate cell adhesion and chromatin accessibility. Int J Biol Macromol 2022; 219:672-684. [PMID: 35952815 DOI: 10.1016/j.ijbiomac.2022.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Cell adhesion has a critical influence on various processes such as cancer metastasis and wound healing. Many substrates have been used for studying cell adhesion and its related biological processes, it is still highly desirable to have a simply prepared and low-cost substrate suitable for regulating cell adhesion. In this study, we produced a series of polyvinyl alcohol/gelatin hydrogels with different gelatin concentrations via dry-annealing method. Our data showed that the protein adsorbing capability was enhanced and cell adhesion area and the ratio of non-spherical cells were increased with the increment of gelatin concentration. We also observed that varying cell adhesion conditions induced by polyvinyl alcohol /gelatin hydrogels resulted in expression level changes of genes involved in mechanotransduction from extracellular matrices (ECM) to the nucleus. In particular, we detected a widespread increase in chromatin accessibility under poor cell adhesion condition. This work provides a useful hydrogel system for regulating cell adhesion and opens up new possibilities for the design of biomaterials for cell adhesion study.
Collapse
Affiliation(s)
- Ran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- MOE Key Laboratory for Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Karen Chang Yan
- Mechanical Engineering and Biomedical Engineering, The College of New Jersey, Ewing, NJ, USA.
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China; School of Civil Engineering, Anhui Jianzhu University, Hefei, China; IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, China.
| |
Collapse
|
4
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Zhang S, Liang R, Xu K, Zheng S, Mukherjee S, Liu P, Wang C, Chen Y. Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112636. [DOI: 10.1016/j.msec.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
6
|
Nishimura K, Nie M, Miura S, Takeuchi S. Microfluidic Device for the Analysis of Angiogenic Sprouting under Bidirectional Biochemical Gradients. MICROMACHINES 2020; 11:E1049. [PMID: 33261134 PMCID: PMC7761305 DOI: 10.3390/mi11121049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/04/2022]
Abstract
In this paper, we developed a spheroid culture device that can trap a spheroid in the trapping site sandwiched by two extracellular matrix gels located at the upper and lower side of the spheroid. This device can form different biochemical gradients by applying target biochemicals separately in upper and lower channels, allowing us to study the angiogenic sprouting under various biochemical gradients in different directions. In the experiments, we confirmed the trapping of the spheroids and demonstrate the investigation on the direction and extent of angiogenic sprouts under unidirectional or bidirectional biochemical gradients. We believe our device can contribute to understanding the pathophysiological phenomena driven by chemical gradients, such as tissue development and tumor angiogenesis.
Collapse
Affiliation(s)
- Keigo Nishimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Shigenori Miura
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;
| | - Shoji Takeuchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|