1
|
Arshad N, Chaudhary AA, Saleem S, Akram M, Qureshi MAUR. Surface modification of surgical suture by chitosan-based biocompatible hybrid coatings: In-vitro anti-corrosion, antibacterial, and in-vivo wound healing studies. Int J Biol Macromol 2024; 281:136571. [PMID: 39419154 DOI: 10.1016/j.ijbiomac.2024.136571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
This work aims to develop chitosan-based biocompatible hybrid coatings on synthetic surgical sutured by direct current electrophoretic deposition (DC-EPD) method. The chitosan (CS), curcumin (CR), aloe-vera (AV), and 2-aminothiazolidin-4-one-5-ethanoic acid (AT) were used as suspensions of varying combinations and compositions (A-I). Each suspension has a further 05 samples (Aa-Ae-Ia-Ie) at selected DC-EPD set parameters (2-10 V, t; 240 s, D; 1 cm). Potentiodynamic polarization measurements (PDP) were carried out in the ringer solution. Among all samples, Ed (CS, 1.6 g/L; 8 V) and Hb (CS-CR-AT, 1.6 g/Leach; 4 V) have shown greatest corrosion inhibition efficiency (IEPDP: 99 %), least corrosion rates (CR; 0.001 mm/y and 0.017 mm/y, respectively), and least corrosion current density (Icorr.; 0.01 A cm-2). SEM and FTIR further confirmed these two best coatings stable and corrosion resistant before and after performing corrosion test, while the coating thickness by profilometry test was found to be greater (16.28 μm) for Hb. Mechanical stress and strain of bare and coated samples were found to have no significant difference. Antibacterial activity revealed greater resistance of Hb against S. aureus as compared to Ed. In-vivo incision wound model study further revealed better healing and less inflammation with coated sutures with comparatively enhanced wound healing effect of Hb coated suture.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan.
| | | | - Samreen Saleem
- Faculty of Life Sciences, Health Services Academy (HSA), 44000 Islamabad, Pakistan
| | - Muhammad Akram
- Department of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan
| | | |
Collapse
|
2
|
Streza A, Antoniac A, Manescu (Paltanea) V, Paltanea G, Robu A, Dura H, Verestiuc L, Stanica E, Voicu SI, Antoniac I, Cristea MB, Dragomir BR, Rau JV, Manolea MM. Effect of Filler Types on Cellulose-Acetate-Based Composite Used as Coatings for Biodegradable Magnesium Implants for Trauma. MATERIALS (BASEL, SWITZERLAND) 2023; 16:554. [PMID: 36676290 PMCID: PMC9863609 DOI: 10.3390/ma16020554] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Magnesium alloys are considered one of the most promising materials for biodegradable trauma implants because they promote bone healing and exhibit adequate mechanical strength during their biodegradation in relation to the bone healing process. Surface modification of biodegradable magnesium alloys is an important research field that is analyzed in many publications as the biodegradation due to the corrosion process and the interface with human tissue is improved. The aim of the current preliminary study is to develop a polymeric-based composite coating on biodegradable magnesium alloys by the solvent evaporation method to reduce the biodegradation rate much more than in the case of simple polymeric coatings by involving some bioactive filler in the form of particles consisting of hydroxyapatite and magnesium. Various techniques such as SEM coupled with EDS, FTIR, and RAMAN spectroscopy, and contact angle were used for the structural and morphological characterization of the coatings. In addition, thermogravimetric analysis (TGA) was used to study the effect of filler particles on polymer thermostability. In vitro cytotoxicity assays were performed on MG-63 cells (human osteosarcomas). The experimental analysis highlights the positive effect of magnesium and hydroxyapatite particles as filler for cellulose acetate when they are used alone from biocompatibility and surface analysis points of view, and it is not recommended to use both types of particles (hydroxyapatite and magnesium) as hybrid filling. In future studies focused on implantation testing, we will use only CA-based composite coatings with one filler on magnesium alloys because these composite coatings have shown better results from the in vitro testing point of view for future potential orthopedic biodegradable implants for trauma.
Collapse
Affiliation(s)
- Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Enache Stanica
- National Institute for Cryogenics and Isotopic Technologies ICSI-Rm. Valcea, ICSI Energy, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, District 1, 011061 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Mihai Bogdan Cristea
- Department of Morphological Sciences, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Bogdan Radu Dragomir
- Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
- DDD Medical Services SRL, 78 Vasile Lupu Street, 700350 Iasi, Romania
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Street, Build. 2, 119991 Moscow, Russia
| | - Maria-Magdalena Manolea
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| |
Collapse
|
3
|
Valiey E, Dekamin MG, Bondarian S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: a bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv 2022; 13:320-334. [PMID: 36605675 PMCID: PMC9768850 DOI: 10.1039/d2ra07319f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, novel cross-linked chitosan by the G1 dendrimer from condensation of melamine and toluene-2,4-diisocyante terminated by sulfamic acid groups (CS-TDI-Me-TDI-NHSO3H), as a bio-based and heterogeneous acidic organocatalyst, was designed and prepared. Also, the structure of the prepared organocatalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermogravimetric analysis/derivative thermogravimetry (TGA/DTA). Subsequently, the catalytic performance of the biobased and dendritic CS-TDI-Me-TDI-NHSO3H, as a multifunctional solid acid, was evaluated for the preparation of 2,3-dihydroquinazoline derivatives through a three-component reaction by following green chemistry principles. Some of the advantages of this new protocol include high to excellent yields and short reaction times as well as easy preparation and remarkable catalyst stability of the introduced acidic organocatalyst. The CS-TDI-Me-TDI-SO3H catalyst can be used for up to five cycles for the preparation of quinazoline derivatives with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
4
|
Rajan ST, Arockiarajan A. A comprehensive review of properties of the biocompatible thin films on biodegradable Mg alloys. Biomed Mater 2022; 18. [PMID: 36541465 DOI: 10.1088/1748-605x/aca85b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Magnesium (Mg) and its alloys have attracted attention as biodegradable materials for biomedical applications owing to their mechanical properties being comparable to that of bone. Mg is a vital trace element in many enzymes and thus forms one of the essential factors for human metabolism. However, before being used in biomedical applications, the early stage or fast degradation of Mg and its alloys in the physiological environment should be controlled. The degradation of Mg alloys is a critical criterion that can be controlled by a surface modification which is an effective process for conserving their desired properties. Different coating methods have been employed to modify Mg surfaces to provide good corrosion resistance and biocompatibility. This review aims to provide information on different coatings and discuss their physical and biological properties. Finally, the current withstanding challenges have been highlighted and discussed, followed by shedding some light on future perspectives.
Collapse
Affiliation(s)
- S Thanka Rajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Arockiarajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India.,Ceramic Technology Group-Center of Excellence in Materials and Manufacturing Futuristic Mobility, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India
| |
Collapse
|
5
|
Natural Coatings and Surface Modifications on Magnesium Alloys for Biomedical Applications. Polymers (Basel) 2022; 14:polym14235297. [PMID: 36501691 PMCID: PMC9740093 DOI: 10.3390/polym14235297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
Magnesium (Mg) alloys have great potential in biomedical applications due to their incomparable properties regarding other metals, such as stainless steels, Co-Cr alloys, and titanium (Ti) alloys. However, when Mg engages with body fluids, its degradation rate increases, inhibiting the complete healing of bone tissue. For this reason, it has been necessary to implement protective coatings to control the rate of degradation. This review focuses on natural biopolymer coatings used on Mg alloys for resorbable biomedical applications, as well as some modification techniques implemented before applying natural polymer coatings to improve their performance. Issues such as improving the corrosion resistance, cell adhesion, proliferation, and biodegradability of natural biopolymers are discussed through their basic comparison with inorganic-type coatings. Emphasis is placed on the expected biological behavior of each natural polymer described, to provide basic information as a reference on this topic.
Collapse
|
6
|
Guo X, Hu Y, Yuan K, Qiao Y. Review of the Effect of Surface Coating Modification on Magnesium Alloy Biocompatibility. MATERIALS 2022; 15:ma15093291. [PMID: 35591624 PMCID: PMC9100161 DOI: 10.3390/ma15093291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Magnesium alloy, as an absorbable and implantable biomaterial, has been greatly developed in the application field of biomaterials in recent years due to its excellent biocompatibility and biomechanics. However, due to the poor corrosion resistance of magnesium alloy in the physiological environment, the degradation rate will be unbalanced, which seriously affects the clinical use. There are two main ways to improve the corrosion resistance of magnesium alloy: one is by adding alloying elements, the other is by surface modification technology. Compared with adding alloy elements, the surface coating modification has the following advantages: (1) The surface coating modification is carried out without changing the matrix elements of magnesium alloy, avoiding the introduction of other elements; (2) The corrosion resistance of magnesium alloy can be improved by relatively simple physical, chemical, or electrochemical improvement. From the perspective of corrosion resistance and biocompatibility of biomedical magnesium alloy materials, this paper summarizes the application and characteristics of six different surface coating modifications in the biomedical magnesium alloy field, including chemical conversion method, micro-arc oxidation method, sol-gel method, electrophoretic deposition, hydrothermal method, and thermal spraying method. In the last section, it looks forward to the development prospect of surface coating modification and points out that preparing modified coatings on the implant surface combined with various modification post-treatment technologies is the main direction to improve biocompatibility and realize clinical functionalization.
Collapse
Affiliation(s)
| | | | | | - Yang Qiao
- Correspondence: ; Tel.: +86-152-7510-6865
| |
Collapse
|
7
|
Guo Y, Li G, Xu Z, Xu Y, Yin L, Yu Z, Zhang Z, Lian J, Ren L. Corrosion Resistance and Biocompatibility of Calcium Phosphate Coatings with a Micro-Nanofibrous Porous Structure on Biodegradable Magnesium Alloys. ACS APPLIED BIO MATERIALS 2022; 5:1528-1537. [PMID: 35312270 DOI: 10.1021/acsabm.1c01277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium (Mg) and its alloys have exhibited great potential for orthopedic applications; however, their poor corrosion resistance and potential cytotoxicity have hindered their further clinical applications. In this study, we prepared a calcium phosphate (Ca-P) coating with a micro-nanofibrous porous structure on the Mg alloy surface by a chemical conversion method. The morphology, composition, and corrosion performance of the coatings were investigated by scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), immersion tests, and electrochemical measurements. The effects of the preparation temperature of the Ca-P coatings were analyzed, and the results confirmed that the coating obtained at 60 °C had the densest structure and the best corrosion resistance. In addition, a systematic investigation into cell viability, ALP activity, and cell morphology confirmed that the Ca-P coating had excellent biocompatibility, which could effectively promote the proliferation, differentiation, and adhesion of osteoblasts. Hence, the Ca-P coating demonstrates great potential in the field of biodegradable Mg-based orthopedic implant materials.
Collapse
Affiliation(s)
- Yunting Guo
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China.,Weihai Institute for Bionic, Jilin University, Weihai 264402, China
| | - Guangyu Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zezhou Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China.,Weihai Institute for Bionic, Jilin University, Weihai 264402, China
| | - Yingchao Xu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Liquan Yin
- Department of Rehabilitation Medicine, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Zhenglei Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Jianshe Lian
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
8
|
|
9
|
Zhu Y, Liu W, Ngai T. Polymer coatings on magnesium‐based implants for orthopedic applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Wei Liu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - To Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| |
Collapse
|
10
|
A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. COATINGS 2021. [DOI: 10.3390/coatings11070747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of biodegradable implants is certainly intriguing, and magnesium and its alloys are considered significant among the various biodegradable materials. Nevertheless, the fast degradation, the generation of a significant amount of hydrogen gas, and the escalation in the pH value of the body solution are significant barriers to their use as an implant material. The appropriate approach is able to solve this issue, resulting in a decrease the rate of Mg degradation, which can be accomplished by alloying, surface adjustment, and mechanical treatment. Surface modification is a practical option because it not only improves corrosion resistance but also prepares a treated surface to improve bone regeneration and cell attachment. Metal coatings, ceramic coatings, and permanent polymers were shown to minimize degradation rates, but inflammation and foreign body responses were also suggested. In contrast to permanent materials, the bioabsorbable polymers normally show the desired biocompatibility. In order to improve the performance of drugs, they are generally encapsulated in biodegradable polymers. This study summarized the most recent advancements in manufacturing polymeric coatings on Mg alloys. The related corrosion resistance enhancement strategies and future potentials are discussed. Ultimately, the major challenges and difficulties are presented with aim of the development of polymer-coated Mg-based implant materials.
Collapse
|
11
|
Nawaz A, Ur Rehman MA. Chitosan/gelatin‐based bioactive and antibacterial coatings deposited via electrophoretic deposition. J Appl Polym Sci 2021. [DOI: 10.1002/app.50220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Aneeqa Nawaz
- Department of Materials Science and Engineering Institute of Space Technology Islamabad Islamabad Pakistan
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering Institute of Space Technology Islamabad Islamabad Pakistan
| |
Collapse
|