1
|
Rostami A, Rabiee M. Anthocyanins extract as a non-toxic and green fluorescent label for bioimaging of HER2-positive breast cancer cells. ENVIRONMENTAL RESEARCH 2023; 237:116878. [PMID: 37579964 DOI: 10.1016/j.envres.2023.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is one of the most common causes of death among women. Fluorescent labeling is an essential research and diagnostic tool in the detection of cancer cells. The development of inexpensive and easily accessible fluorescent probes for the detection of cancerous cells is of great importance. Herein we report a green and inexpensive method for extraction of natural anthocyanin fluorophore from Red Cabbage and demonstrate its application for fluorescent bioimaging of human epidermal growth factor receptor 2 (HER2) positive breast cancer cells using non-covalent conjugation of anthocyanin fluorophores to Trastuzumab antibody. In this work, the extracted anthocyanins were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) and fluorescent spectroscopy. The anthocyanin extract showed proper fluorescent intensity for microscopic fluorescent cell imaging, negligible photobleaching and no sign of cytotoxicity (more than 90% viability). The presence of hydroxy and carboxyl functional groups in the structure of anthocyanins provided the opportunity for the non-covalent conjugation of anthocyanins to antibodies. The fluorescent probe made by non-covalent conjugation of the anthocyanin fluorophores to Trastuzumab antibody was used for specific fluorescent imaging of HER2 receptors on HER2 positive breast cancer cells. This green fluorescent probe may have several future applications in biological diagnosis and bio-imaging techniques.
Collapse
Affiliation(s)
- Azin Rostami
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Abstract
Gold nanoclusters (AuNCs) have become a promising material for bioimaging detection because of their tunable photoluminescence, large Stokes shift, low photobleaching, and good biocompatibility. Last decade, great efforts have been made to develop AuNCs for enhanced imaging contrast and multimodal imaging. Herein, an updated overview of recent advances in AuNCs was present for visible fluorescence (FL) imaging, near-infrared fluorescence (NIR-FL) imaging, two-photon near-infrared fluorescence (TP-NIR-FL) imaging, computed tomography (CT) imaging, positron emission tomography (PET) imaging, magnetic resonance imaging (MRI), and photoacoustic (PA) imaging. The justification of AuNCs applied in bioimaging mentioned above applications was discussed, the performance location of different AuNCs were summarized and highlighted in an unified parameter coordinate system of corresponding bioimaging, and the current challenges, research frontiers, and prospects of AuNCs in bioimaging were discussed. This review will bring new insights into the future development of AuNCs in bio-diagnostic imaging.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Wenrui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
4
|
Li N, Chen L, Luo Z, Nie G, Zhang P, He S, Peng J. Dual-Targeting of Doxorubicin and Chlorine e6 Co-Delivery Based on Small-Size Nanocomposite for the Synergetic Imaging and Therapy. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Shahbazi N, Zare-Dorabei R, Naghib SM. Design of a Ratiometric Plasmonic Biosensor for Herceptin Detection in HER2-Positive Breast Cancer. ACS Biomater Sci Eng 2022; 8:871-879. [PMID: 35044154 DOI: 10.1021/acsbiomaterials.1c01369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common cause of cancer death in women; therefore, its early detection and treatment are crucial. To achieve this goal, we designed an optical sensor based on direct interaction of trastuzumab [Herceptin (HER)], a monoclonal antibody used to treat HER2-positive breast cancer, with plasmonic nanoparticles. Surface-modified gold nanoparticles (AuNPs) have gained considerable attention in biosensing techniques over the last years, which actuated these nanoparticles to the heart of various biosensing notions. We have exploited the localized surface plasmon resonance (LSPR) of gold nanoparticles to determine HER in human serum. AuNPs were decorated with negatively charged citrate ions, yielding enhanced direct-surface interaction with HER antibodies. The AuNPs are mixed with silver nanoparticles (AgNPs) in an optimized ratio to increase selectivity and sensitivity further. AuNPs detect the HER antibodies using LSPR, whereas AgNPs help monitor interferences' effect on the sensing media. The three effective factors in HER sensing, including the nanoparticle ratio, temperature, and pH were optimized via response surface methodology (RSM) based on the central composite design (CCD). The sensor's response toward HER was achieved in the linear range of 0.5 × 10-7 to 40 × 10-7 M with the detection limit of 3.7 × 10-9 M and relative standard deviation (RSD) less than 5%. The selectivity of the LSPR sensor was assessed by monitoring its response toward HER in the presence of other biological molecules with similar physicochemical properties. Rapid response time (less than 1 min), selectivity, and the simplicity of the developed LSPR-based sensor are the key advantages of the developed sensor.
Collapse
Affiliation(s)
- Neda Shahbazi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
6
|
The Role of Gold Nanoclusters as Emerging Theranostic Agents for Cancer Management. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00222-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Kim JH, Kim J. Post-Synthesis Modification of Photoluminescent and Electrochemiluminescent Au Nanoclusters with Dopamine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E46. [PMID: 33375457 PMCID: PMC7824466 DOI: 10.3390/nano11010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Here, we report a post-synthesis functionalization of the shell of Au nanoclusters (NCs) synthesized using glutathione as a thiolate ligand. The as-synthesized Au NCs are subjected to the post-synthesis functionalization via amidic coupling of dopamine on the cluster shell to tailor photoluminescence (PL) and electrochemiluminescence (ECL) features of the Au NCs. Because the NCs' PL at ca. 610 nm is primarily ascribed to the Au(I)-thiolate (SG) motifs on the cluster shell of the NCs, the post-synthesis functionalization of the cluster shell enhanced the PL intensity of the Au NCs via rigidification of the cluster shell. In contrast to the PL enhancement, the post-synthesis modification of the cluster shell does not enhance the near-infrared (NIR) ECL of the NCs because the NIR ECL at ca. 800 nm is ascribed to the Au(0)-SG motifs in the metallic core of the NCs.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Korea;
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|