1
|
Chen Y, Mao L, Wang W, Yuan H, Yang C, Zhang R, Zhou Y, Zhang G. An efficient strategy to tailor PET hydrolase: Simple preparation with high yield and enhanced hydrolysis to micro-nano plastics. Int J Biol Macromol 2024; 281:136479. [PMID: 39393729 DOI: 10.1016/j.ijbiomac.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Polyethylene terephthalate (PET) nano/microplastics (PET-NMPs) are regarded as an emergent hazardous waste for the environment. Enzymatic treatment of PET-NMPs is one of the most promising methods. However, strategies for mining or engineering of PET hydrolases with better characteristics and the simple and cost-effective preparation of them are the bottlenecks currently. Herein, we proposed a gene fusion strategy to tailor PET hydrolase (ICCG) with ferritin (namely F-C) towards micro-nano PET degradation. The purified F-C was obtained by an easy scalable low-speed centrifugation with 80.8 % activity recovery and 82.9 % protein recovery compared to the crude protein extraction, with the final high yield of 2.17 g/L. Encouragingly, unlike only hydrolyzing amorphous PET (crystallinity lower than 10 %), the resulted F-C showed 84.53 mgTPA/h/mgEnzyme specific activity at 70 °C for 5 h towards micro-PET with relatively high crystallinity (20.54 %) at the optimized enzyme/PET ratio of 1:100 (Wt), without producing intermediates. The supreme activity of F-C was closely related to its enhanced affinity towards substrate, increased substrate's ester bond tensions and binding pocket volume. More interestingly, F-C exhibited promising stability not only in storage or high temperature, but also in simulated seawater (hypersaline environment), with the half-lives of 128.4 days at 30 °C. Thus, the all-in-one strategy will offer a green and alternative solution to assist the PET-NMPs waste treatments such as recycling in the high-temperature reactor or degradation in seawater.
Collapse
Affiliation(s)
- Yaxin Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lei Mao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Weijuan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
2
|
Chen Z, Wu T, Yu S, Li M, Fan X, Huo YX. Self-assembly systems to troubleshoot metabolic engineering challenges. Trends Biotechnol 2024; 42:43-60. [PMID: 37451946 DOI: 10.1016/j.tibtech.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Enzyme self-assembly is a technology in which enzyme units can aggregate into ordered macromolecules, assisted by scaffolds. In metabolic engineering, self-assembly strategies have been explored for aggregating multiple enzymes in the same pathway to improve sequential catalytic efficiency, which in turn enables high-level production. The performance of the scaffolds is critical to the formation of an efficient and stable assembly system. This review comprehensively analyzes these scaffolds by exploring how they assemble, and it illustrates how to apply self-assembly strategies for different modules in metabolic engineering. Functional modifications to scaffolds will further promote efficient strategies for production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Xuanhe Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China.
| |
Collapse
|
3
|
Zheng Y, Luo W, Yang J, Wang H, Hu Q, Zeng Z, Li X, Wang S. Controlled co-immobilisation of proteins via 4'-phosphopantetheine-mediated site-selective covalent linkage. N Biotechnol 2022; 72:114-121. [PMID: 36307012 DOI: 10.1016/j.nbt.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/12/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
In Escherichia coli, acyl carrier protein (ACP) is posttranslationally converted into its active holo-ACP form via covalent linkage of 4'-phosphopantetheine (4'-PP) to residue serine-36. We found that the long flexible 4'-PP arm could react chemoselectively with the iodoacetyl group introduced on solid supports with high efficiency under mild conditions. Based on this finding, we developed site-selective immobilisation of proteins via the active holo-ACP fusion tag, independently of the physicochemical properties of the protein of interest. Furthermore, the molecular ratios of co-immobilised proteins can be manipulated because the tethering process is predominantly directed by the molar concentrations of diverse holo-ACP fusions during co-immobilisation. Conveniently tuning the molecular ratios of co-immobilised proteins allows their cooperation, leading to a highly productive multi-protein co-immobilisation system. Kinetic studies of enzymes demonstrated that α-amylase (Amy) and methyl parathion hydrolase (MPH) immobilised via active tag holo-ACP had higher catalytic efficiency (kcat/Km) in comparison with their corresponding counterparts immobilised via the sulfhydryl groups (-SH) of these proteins. The immobilised holo-ACP-Amy also presented higher thermostability compared with free Amy. The enhanced α-amylase thermostability upon immobilisation via holo-ACP renders it more suitable for industrial application.
Collapse
Affiliation(s)
- Yujiao Zheng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Wenshi Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Jia Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Huazhen Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Quan Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Zaohai Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xuefeng Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Shengbin Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
4
|
Wang L, Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|