1
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
2
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
3
|
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. MICROMACHINES 2023; 14:1017. [PMID: 37241640 PMCID: PMC10220853 DOI: 10.3390/mi14051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase play important roles in the inhibition of oxidative-damage-related pathological diseases. However, natural antioxidant enzymes face some limitations, including low stability, high cost, and less flexibility. Recently, antioxidant nanozymes have emerged as promising materials to replace natural antioxidant enzymes for their stability, cost savings, and flexible design. The present review firstly discusses the mechanisms of antioxidant nanozymes, focusing on catalase-, superoxide dismutase-, and glutathione peroxidase-like activities. Then, we summarize the main strategies for the manipulation of antioxidant nanozymes based on their size, morphology, composition, surface modification, and modification with a metal-organic framework. Furthermore, the applications of antioxidant nanozymes in medicine and healthcare are also discussed as potential biological applications. In brief, this review provides useful information for the further development of antioxidant nanozymes, offering opportunities to improve current limitations and expand the application of antioxidant nanozymes.
Collapse
Affiliation(s)
- Nguyen Thi My Thao
- School of Medicine and Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | | | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Xu W, Yang Y, Kong R, Wang J. ssDNA-C3N4 conjugates-based nanozyme sensor array for discriminating mycotoxins. Mikrochim Acta 2022; 190:6. [PMID: 36471087 DOI: 10.1007/s00604-022-05593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A nanozyme sensor array based on the ssDNA-distensible C3N4 nanosheet sensor elements for discriminating multiple mycotoxins commonly existing in contaminated cereals has been explored. The sensor array exploited (a) three DNA nonspecific sequences (A40, T40, C40) absorbed on the C3N4 nanosheets as sensor elements catalyzing the oxidation of TMB; (b) the presence of five mycotoxins affected the catalytic activity of three nanozymes with various degrees. The parameter (A0-A) was employed as the signal output to obtain the response patterns for different mycotoxins with the same concentration where A0 and A were the absorption peak values at 650 nm of oxTMB in the absence and presence of target mycotoxins, respectively. After the raw data was subjected to principal component analysis, 3D canonical score plots were obtained. The sensor array was capable of separating five mycotoxins from each other with 100% accuracy even if the concentration of the mycotoxins was as low as 1 nM. Moreover, the array performed well in discriminating the mycotoxin mixtures with different ratios. Importantly, the practicality of this sensor array was demonstrated by discriminating the five mycotoxins spiking in corn-free samples in 3D canonical score plots, validating that the sensor array can act as a flexible detection tool for food safety. A nanozyme sensor array was developed based on the ssDNA-distensible C3N4 NSs sensor elements for discriminating muitiple mycotoxins.
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China.
| | - Wenxing Xu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| | - Ye Yang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| | - Rongmei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| | - Junmei Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
| |
Collapse
|
5
|
Li F, Stewart C, Yang S, Shi F, Cui W, Zhang S, Wang H, Huang H, Chen M, Han J. Optical Sensor Array for the Early Diagnosis of Alzheimer’s Disease. Front Chem 2022; 10:874864. [PMID: 35444997 PMCID: PMC9013832 DOI: 10.3389/fchem.2022.874864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and has complicated pathobiology, leading to irreversible memory loss and severe cognitive dysfunction. For patients with AD, the advent of the disease usually occurs after years of pathological changes. The early diagnosis and monitoring of AD are of great significance as the early-stage intervention and treatment may be the most effective. Biomarkers, such as beta-amyloid and tau levels in cerebrospinal fluid (CSF) and brain, offer one of the most promising paths and are combined with neuroimaging and immunological detection for AD diagnosis. However, high expense and radiation of neuroimaging and low sensitivity of immunosorbent assay limited their applications. Meanwhile, the relevance of Aβ peptides and tau proteins to the development of AD remains highly debatable, meaning that detecting one specific biomarker holds limited prospects in achieving early and accurate detection of AD. Optical sensor arrays based on pattern recognition enable the discrimination of multiple analytes in complicated environments and are thus highly advantageous for the detection of AD with multi-biomarkers. In this review, we survey the recent advances of optical sensor arrays for the diagnosis of AD, as well as the remaining challenges.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Callum Stewart
- Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Shijie Yang
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fangfang Shi
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Wenyu Cui
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shuming Zhang
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Hui Huang
- Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
- *Correspondence: Hui Huang, ; Mingqi Chen, ; Jinsong Han,
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
- *Correspondence: Hui Huang, ; Mingqi Chen, ; Jinsong Han,
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
- *Correspondence: Hui Huang, ; Mingqi Chen, ; Jinsong Han,
| |
Collapse
|
6
|
Zhang P, Tan C. Cross-Reactive Fluorescent Sensor Array for Discrimination of Amyloid Beta Aggregates. Anal Chem 2022; 94:5469-5473. [PMID: 35362962 DOI: 10.1021/acs.analchem.2c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been hypothesized that misfolding and misassembly of proteins into various aggregation states contribute to several neurodegenerative diseases. For instance, amyloid beta (Aβ) aggregation is considered a major factor in Alzheimer's disease pathogenesis. Herein, a fluorescent sensor array for detecting Aβ aggregates was fabricated using two probe pairs of conjugated polyelectrolytes and organic dye molecules, PPE1-Thioflavin T (ThT) and PPESO3-Nile Red (NR). Pattern recognition was achieved by linear discriminant analysis and hierarchical clustering analysis algorithms. As a result of distinguishing among monomers and three pure aggregate species, namely oligomers, protofibrils, and fibrils, the cross-reactive sensor array was also able to monitor aggregation kinetics in various aggregate forms and distinguish between on- and off- aggregate pathways. Our study provides a convenient approach for simultaneous detection of Aβ aggregates in mixtures, which may also be applied to the analysis of other disease-related proteins that are prone to aggregates.
Collapse
Affiliation(s)
- Pangmiaomiao Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
7
|
Wang H, Chen M, Sun Y, Xu L, Li F, Han J. Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes. Anal Chem 2022; 94:2757-2763. [PMID: 35084168 DOI: 10.1021/acs.analchem.1c03623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Five fluorescent positively charged poly(para-aryleneethynylene) (P1-P5) were designed to construct electrostatic complexes C1-C5 with negatively charged graphene oxide (GO). The fluorescence of conjugated polymers was quenched by the quencher GO. Three electrostatic complexes were enough to distinguish between 12 proteins with 100% accuracy. Furthermore, using these sensor arrays, we could identify the levels of Aβ40 and Aβ42 aggregates (monomers, oligomers, and fibrils) via employing machine learning algorithms, making it an attractive strategy for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Yimin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211109, China
| | - Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
8
|
Liu C, Li Y, Luo Y, Zhang Y, Zhou T, Deng J. Lab-on-a-ZnO-Submicron-Particle Sensor Array for Monitoring AD upon Cd 2+ Exposure with CSF Tau441% as an Effective Hallmark. Anal Chem 2021; 93:15005-15014. [PMID: 34738809 DOI: 10.1021/acs.analchem.1c02570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, based on the posttreatment strategy, blue-color-emissive ZnO submicron particles (B-ZnO SMPs) and red-color-emissive ZnO submicron particles (R-ZnO SMPs) were obtained from rationally designed Zn-infinite coordination polymer (ICP) precursors. After modification of thiol-containing aptamers, diverse spectral changes in the ultraviolet and visible regions of B- and R-ZnO SMPs toward different tau species were explored to construct a lab-on-a-ZnO-submicron-particle sensor array. Assisted by principal component analysis (PCA), the unique fingerprints of the sensor array enabled the simultaneous differentiation and quantitative detection of different tau species (tau381, tau410, and tau441) for the first time. Furthermore, the dynamic changes of tau441% (the ratio of the two most reported representative 4R isoform (full-length tau441) and 3R isoform (tau381)) in cerebrospinal fluid (CSF) during the Alzheimer's disease (AD) onset of Cd2+-exposed rats could also be monitored by the lab-on-a-ZnO-submicron-particle sensor array, which was supposed to be an effective hallmark and highly correlated with the formation of neurofibrillary tangles (NFTs). This study not only provides a further insight into the involvement of subchronic Cd2+ exposure in the tau etiology of AD but also offers more comprehensive and effective information about the asymptomatic stage of AD upon environmental risk, which has potential applications in the early diagnosis and therapy.
Collapse
Affiliation(s)
- Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuanting Li
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Ying Zhang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
9
|
Huang C, Luo Y, Li J, Liu C, Zhou T, Deng J. pH-Regulated H 4TCPE@Eu/AMP ICP Sensor Array and Its Fingerprinting on Test Papers: Toward Point-of-Use Systematic Analysis of Environmental Antibiotics. Anal Chem 2021; 93:9183-9192. [PMID: 34164990 DOI: 10.1021/acs.analchem.1c01214] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE) was selected as the guest and incorporated into a Eu/AMP ICP host to establish a "lab-on-an-AIE@Ln/ICP" sensor array for identifying and sensing environmental antibiotics simultaneously. First, on the basis of a theoretical study of the antenna effect and reductive photoinduced charge transfer between the as-prepared H4TCPE@Eu/AMP ICPs and antibiotics, respectively, the response from the sensitized time-resolved fluorescence of the host and the unique aggregation-induced emission (AIE) of the guest were selected as the main sensing elements for the sensor array. With the regulation of pH, the diverse fluorescence responses for antibiotics with either structural differences (flumequine, oxytetracycline, and sulfadiazine) or structural similarities (oxytetracycline, tetracycline, and doxycycline) were recorded and processed by principal component analysis; systematic analysis of environmental antibiotics was therefore realized. Encouraged by the superior anti-aggregation-caused quenching effect of H4TCPE@Eu/AMP ICPs on the test strip, the distinct fluorescence color changes of the "lab-on-an-AIE@Ln/ICP" sensor array were further explored with the aid of smartphones. The fingerprinting pattern of the sensor array on test paper eventually holds great potential for the point-of-use systematic analysis of environmental antibiotics even in complicated real samples.
Collapse
Affiliation(s)
- Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jiacheng Li
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|