1
|
Shakya KR, Mansoori N, Anand A, Sharma V, Verma V. Agarose Cryogels Loaded with Polydopamine Microspheres for Sustainable Wound Care with Enhanced Hemostatic and Antioxidant Properties. ACS APPLIED BIO MATERIALS 2024; 7:6808-6822. [PMID: 39350639 DOI: 10.1021/acsabm.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Excessive bleeding presents a grave risk to life, especially in scenarios involving deep wounds such as those inflicted by gunshots and accidental stabs. Despite advancements in wound care management, existing commercial hemostatic agents have limitations, necessitating the development of enhanced solutions. In this study, we developed cryogels using agarose and polydopamine microspheres as a hemostatic dressing to effectively manage profuse bleeding. The resulting cryogels demonstrated impressive attributes, such as high absorption capacity (>4000%), shape recovery ability, antioxidant properties, and excellent biocompatibility in mammalian cell lines. Particularly noteworthy was the rapid blood clotting observed in vitro, with the agarose/PDA cryogels achieving complete clotting within just 90 s. Subsequent validation in the rat trauma model further underscored their hemostatic efficacy, with clotting times of 40 and 53 s recorded in tail amputation and liver puncture models, respectively. The porous structure and hydrophilicity of the cryogels facilitated superior blood absorption and retention, while the amine groups of polydopamine played a pivotal role in enhancing blood clotting activity. This study represents a significant step forward in utilizing agarose/polydopamine cryogels as advanced materials for hemostatic wound dressings, promising an impactful contribution to wound therapy.
Collapse
Affiliation(s)
- Kaushal R Shakya
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nasim Mansoori
- Department of Surgical Discipline, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anmol Anand
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Sharma
- Department of Surgical Discipline, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Michel R, Corté L. Hydrogel-tissue adhesion by particle bridging: sensitivity to interfacial wetting and tissue composition. SOFT MATTER 2024; 20:5122-5133. [PMID: 38894656 DOI: 10.1039/d4sm00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Solid particles placed at the interface between hydrogels and biological tissues can create an adhesive joint through the adsorption of macromolecules onto their surfaces. Here, we investigated how this adhesion by particle bridging depends on the wetting of tissue surfaces and on the heterogeneities in tissue composition. Ex vivo peeling experiments were performed using poly(ethylene glycol) films coated with aggregates of silica nanoparticles deposited on the internal tissues of porcine liver. We show that the adhesion produced by particle bridging is altered by the presence of fluid wetting the tissue-hydrogel interface. For both uncoated and coated films, a transition from lubricated to adhesive contact was observed when all the interfacial fluid was drained. The presence of a silica nanoparticle coating shifted the transition towards more hydrated conditions and significantly enhanced adhesion in the adhesive regime. After 5 min of contact, the adhesion energy achieved on liver parenchyma with the coated films (7.7 ± 1.9 J m-2) was more than twice that of the uncoated films (3.2 ± 0.3 J m-2) or with a surgical cyanoacrylate glue (2.9 ± 1.9 J m-2). Microscopic observations during and after peeling revealed different detachment processes through either particle detachment or cohesive fracture in the tissue. These mechanisms could be directly related to the microanatomy of the liver parenchyma. The effects of both interfacial wetting and tissue composition on adhesion may provide guidelines to tailor the design of tissue adhesives using particle bridging.
Collapse
Affiliation(s)
- Raphaël Michel
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005, Paris, France.
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005, Paris, France.
- Centre des Matériaux, MINES Paris, CNRS, PSL University, 63-65 rue Henri-Auguste Desbruères, 91003, Evry, France.
| |
Collapse
|
3
|
Yoon S, Kim MJ, Kim C, Kim Y, Lee B, Lee CY, Lim B, Lee JH. Chain-like One-Dimensional Assembly of Mesoporous Silica Nanoparticles: An Approach To Improve Hydrogel Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12967-12973. [PMID: 38858163 DOI: 10.1021/acs.langmuir.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Mesoporous silica nanoparticles (MSNPs) are well known for their adhesive properties with hydrogels and living tissues. However, achieving direct contact between the silica nanoparticle surface and the adherend necessitates the removal of capping agents, which can lead to severe aggregation when exposed to wet surfaces. This aggregation is ineffective for simultaneously bridging the two adherends, resulting in a reduced adhesive strength. In this study, we designed and synthesized mesoporous silica nanochains (MSNCs) to enhance the interactions with hydrogels by promoting the formation of coarser structures with increased nanopore exposure. Chain-like one-dimensional assemblies in the MSNCs were generated by depleting the capping ligand, cetyltrimethylammonium bromide, from the surface of the MSNPs. To quantify the porous areas of the MSNCs, we analyzed scanning electron microscopy (SEM) images using an in-house SEM image analysis algorithm. Additionally, we conducted a comparative assessment of the adhesion energies of MSNCs and MSNPs on a poly(dimethylacrylamide) hydrogel using a universal testing machine. The MSNCs exhibited a maximum adhesion energy of 13.7 ± 0.7 J/m2 at 3 wt %, surpassing that of MSNPs (10.9 ± 0.3 J/m2) at 2 wt %. Moreover, the unique stacking structure of the MSNCs enabled them to maintain an adhesion energy of 13.4 ± 1.0 J/m2 at a high concentration of 9 wt %, whereas the adhesion energy of MSNPs decreased to 8.2 ± 0.4 J/m2. This underscores their potential as superior hydrogel adhesives in challenging wet tissue-like environments.
Collapse
Affiliation(s)
- Seokyoung Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Min Jeong Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Chansong Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Yunchul Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Byoungsang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Chae Yeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
- Research Center for Advanced Materials Technology, Core Research Institute (CRI), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Buwalda S. Advanced Functional Polymers for Unmet Medical Challenges. Biomacromolecules 2023; 24:4329-4332. [PMID: 37811641 DOI: 10.1021/acs.biomac.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A significant part of medicine relies on biomaterials, which are designed to interact with biological tissues for therapeutic or diagnostic purposes. A number of major trends can be distinguished in the multidisciplinary field of biomaterials science, including the precise synthesis of biomaterial building blocks, elucidation of biomaterial processing-structure-property correlations, as well as clarification of the interactions between living tissues and biomaterials. Moreover, advances in biofabrication facilitate the development of tailored implants with improved functionality, whereas recent achievements in medical imaging allow for a detailed evaluation of the performance and spatiotemporal behavior of medical devices and nanomedicine formulations.
Collapse
Affiliation(s)
- Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
5
|
Pan Z, Fu QQ, Wang MH, Gao HL, Dong L, Zhou P, Cheng DD, Chen Y, Zou DH, He JC, Feng X, Yu SH. Designing nanohesives for rapid, universal, and robust hydrogel adhesion. Nat Commun 2023; 14:5378. [PMID: 37666848 PMCID: PMC10477317 DOI: 10.1038/s41467-023-40753-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
Nanoparticles-based glues have recently been shown with substantial potential for hydrogel adhesion. Nevertheless, the transformative advance in hydrogel-based application places great challenges on the rapidity, robustness, and universality of achieving hydrogel adhesion, which are rarely accommodated by existing nanoparticles-based glues. Herein, we design a type of nanohesives based on the modulation of hydrogel mechanics and the surface chemical activation of nanoparticles. The nanohesives can form robust hydrogel adhesion in seconds, to the surface of arbitrary engineering solids and biological tissues without any surface pre-treatments. A representative application of hydrogel machine demonstrates the tough and compliant adhesion between dynamic tissues and sensors via nanohesives, guaranteeing accurate and stable blood flow monitoring in vivo. Combined with their biocompatibility and inherent antimicrobial properties, the nanohesives provide a promising strategy in the field of hydrogel based engineering.
Collapse
Affiliation(s)
- Zhao Pan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qi-Qi Fu
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
| | - Mo-Han Wang
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Dong
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Pu Zhou
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Dong-Dong Cheng
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
| | - Duo-Hong Zou
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Jia-Cai He
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Centre for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Silk composite interfacial layer eliminates rebleeding with chitosan-based hemostats. Carbohydr Polym 2023; 304:120479. [PMID: 36641188 DOI: 10.1016/j.carbpol.2022.120479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022]
Abstract
Chitosan foams are among the approved hemostats for pre-hospital hemorrhagic control but suffer from drawbacks related to mucoadhesiveness and rebleeding. Herein, we have developed a designer bilayered hemostatic foam consisting of a bioactive layer composed of silica particles (≈300 nm) and silk fibroin to serve as the tissue interfacing component on a chitosan foam. The foam composition was optimized based on the in vitro clotting behavior and cytocompatibility of individual components. In vivo analysis in a rat model demonstrated that the developed hemostat could achieve rapid clotting (31 ± 4 s), similar to a chitosan-based hemostat, but the former had significantly lower blood loss. Notably, removal of the bilayered hemostat prevented rebleeding, unlike the chitosan foam, which was associated with markedly higher incidences of rebleeding (50 %) and left behind material residue. Thus, the designer bilayered foam presented here is a potent inducer of blood clotting whilst affording easy removal with minimal rebleeding.
Collapse
|
7
|
Vahdati M, Hourdet D, Creton C. Soft Underwater Adhesives based on Weak Molecular Interactions. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Palierse E, Roquart M, Norvez S, Corté L. Coatings of hydroxyapatite-bioactive glass microparticles for adhesion to biological tissues. RSC Adv 2022; 12:21079-21091. [PMID: 35919836 PMCID: PMC9305725 DOI: 10.1039/d2ra02781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Adsorption of particles across interfaces has been proposed as a way to create adhesion between hydrogels and biological tissues. Here, we explore how this particle bridging approach can be applied to attach a soft polymer substrate to biological tissues, using bioresorbable and nanostructured hydroxyapatite-bioactive glass microparticles. For this, microparticles of aggregated flower-like hydroxyapatite and bioactive glass (HA-BG) were synthesized via a bioinspired route. A deposition technique using suspension spreading was developed to tune the coverage of HA-BG coatings at the surface of weakly cross-linked poly(beta-thioester) films. By varying the concentration of the deposited suspensions, we produced coatings having surface coverages ranging from 4% to 100% and coating densities ranging from 0.02 to 1.0 mg cm-2. The progressive dissolution of these coatings within 21 days in phosphate-buffered saline was followed by SEM. Ex vivo peeling experiments on pig liver capsules demonstrated that HA-BG coatings produce an up-to-two-fold increase in adhesion energy (9.8 ± 1.5 J m-2) as compared to the uncoated film (4.6 ± 0.8 J m-2). Adhesion energy was found to increase with increasing coating density until a maximum at 0.2 mg cm-2, well below full surface coverage, and then it decreased for larger coating densities. Using microscopy observations during and after peeling, we show that this maximum in adhesion corresponds to the appearance of particle stacks, which are easily separated and transferred onto the tissue. Such bioresorbable HA-BG coatings give the possibility of combining particle bridging with the storage and release of active compounds, therefore offering opportunities to design functional bioadhesive surfaces.
Collapse
Affiliation(s)
- Estelle Palierse
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Maïlie Roquart
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| |
Collapse
|
9
|
Roy A, Guha Ray P, Manna K, Banerjee C, Dhara S, Pal S. Poly( N-vinyl imidazole) Cross-Linked β-Cyclodextrin Hydrogel for Rapid Hemostasis in Severe Renal Arterial Hemorrhagic Model. Biomacromolecules 2021; 22:5256-5269. [PMID: 34755513 DOI: 10.1021/acs.biomac.1c01174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A unique facile process has been adopted for fast assembly of a poly(N-vinyl imidazole) cross-linked β-cyclodextrin hydrogel through microwave-assisted free radical polymerization, using N,N'-methylenebis(acrylamide) cross-linker. The copolymer possesses positive surface charge, one of the characteristic properties of an ideal hemostatic hydrogel. The functionalized imidazole-based hydrogel demonstrates rapid, superior blood coagulation kinetics under in vitro and in vivo conditions. On application to a major renal arterial hemorrhagic model, this hydrogel shows better blood clotting kinetics, leading to complete hemostasis in as few as ∼144 ± 7 s. Additionally, 350 μL of whole blood was clotted instantly, in ∼35 s, and therefore, reinforcing its hemostatic potential. The hydrogel demonstrates excellent biocompatibility, when seeded with human dermal fibroblast cells, retaining the native property of its predecessor. In addition, the hydrogel presents excellent hemocompatibility when tested with whole blood with the highest hemolytic ratio of 1.07 ± 0.05%. Moreover, it also demonstrates potential as a carrier for sustained release of an anesthetic drug, lidocaine hydrochloride monohydrate (∼83% in 24 h). The rapid hemostatic behavior of the hydrogel is coupled with its cytocompatibility and hemocompatibilty properties along with controlled drug release characteristics. These behaviors evidently demonstrate it to be an excellent alternative for a superior hemostatic material for severe hemorrhagic conditions.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Kalipada Manna
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Chiranjib Banerjee
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sagar Pal
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| |
Collapse
|
10
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|