1
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024; 7:8076-8101. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Liu X, Hu Y, Hu J, Bai M, Kang M, Wei Y, Huang D. Self-gelling, tunable adhesion, antibacterial and biocompatible quaternized cellulose/tannic acid/polyethylene glycol/montmorillonite composite powder for quick hemostasis. Int J Biol Macromol 2024; 282:136646. [PMID: 39442851 DOI: 10.1016/j.ijbiomac.2024.136646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Hemostatic powders are widely used in incompressible or irregularly shaped bleeding wounds, but traditional hemostatic powders exhibit low adhesion, unsatisfactory hemostatic effect, limited infection control, and are not suitable for clinical or emergency situations. This study developed a novel self-gelling hemostatic powder (QTPM) consisting of quaternized cellulose (QC)/ tannic acid (TA)/ polyethylene glycol (PEG)/ montmorillonite (MMT). QTPM could absorb interfacial liquid hydrating to a stable hydrogel which form a switchable adhesion to tissues. Moreover, QTPM exhibits excellent antibacterial property by the synergistic effect of QC and TA. Furthermore, QTPM directly activate intrinsic and extrinsic coagulation hemostatic pathways to enhance hemostasis, and it concentrate coagulation factors. In vivo hemostasis study results show that QTPM significantly accelerated hemostasis and reduced blood loss compared with the blank group (>75 % reduction in hemostatic time, >85 % reduction in blood loss) in liver bleeding model (hemostasis time of 71.67 ± 7.09 s, blood loss of 19.23 ± 2.60 mg) and tail amputation model (hemostasis time of 91.03 ± 12.05 s, blood loss of 15.24 ± 1.77 mg). Therefore, the advantages of QTPM including rapid and effective hemostasis, easy usage, easy storability and adaptability make it a potential biomaterial for rapid hemostasis direction in the clinical setting.
Collapse
Affiliation(s)
- Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Junjie Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miaomiao Bai
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Min Kang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
3
|
Zhou P, Liu G, Fang H, Zhao Z, Zhang Y, Tang X, Li P, Zeng J, Deng Y, Zhang M. Supramolecular deep eutectic solvents: Current advances and critical evaluation of cyclodextrins from solute to solvent in emerging functional food. Compr Rev Food Sci Food Saf 2024; 23:e70026. [PMID: 39379307 DOI: 10.1111/1541-4337.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The acceptance of nonconventional solvents as viable substitutes for traditional organic solvents has been widely recognized in order to comply with food-safety and sustainability regulations. Cyclodextrins (CDs), derived from starch, are cyclic oligosaccharides with the ability to form inclusion complexes with a variety of functional substances as the result of their distinctive structure, which enables them to effectively encapsulate bioactive compounds, rendering them highly sought after for use in food applications. In the implementing plan to achieve carbon-neutral emissions by 2050, the novel generation of supramolecular deep eutectic solvents (SUPRADES) has garnered increased attention and interest. The approach of utilizing SUPRADES as emerging solvents was just beginning to be applied to food studies. This review summarizes a revision of the current advances and critical evaluation of cyclodextrin-based SUPRADES (CD-based SUPRADES) as promising solvents for the enhancement of the extraction efficiency, solubilization and stability of bioactive compounds, adsorption and separation of food components, packaging materials, and modification of biopolymers. To meet the sustainable processing needs of the food industry, the emerging categories of CD-based SUPRADES need to be further fabricated. Herein, our review will sort out the potential application of CD-based SUPRADES in the food industry, aiming to provide a better understanding of CD-based SUPRADES within the viewpoint of food science. Formulation intricacies and scalability issues in real functional foods using CD-based SUPRADES as media need more efforts.
Collapse
Affiliation(s)
- Pengfei Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hui Fang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jiarui Zeng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
4
|
Li S, Wang Y, Li C, Zhou B, Zeng X, Zhu H. Supramolecular nanomedicine in the intelligent cancer therapy: recent advances and future. Front Pharmacol 2024; 15:1490139. [PMID: 39464634 PMCID: PMC11502448 DOI: 10.3389/fphar.2024.1490139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, the incidence of cancer has been increasing year by year, and the burden of the disease and the economic burden caused by it has been worsening. Although chemotherapy, immunotherapy, targeted therapy and other therapeutic means continue to progress, they still inevitably have problems such as high toxicity and side effects, susceptibility to drug resistance, and high price. Photothermal therapy and photodynamic therapy have demonstrated considerable advantages in cancer imaging and treatment due to their minimally invasive and selective nature. However, their development has been constrained by challenges related to drug delivery. In recent times, drug delivery systems constructed based on supramolecular chemistry have been the subject of considerable interest, particularly in view of their compatibility with the high permeability and long retention effect of tumors. Furthermore, the advantage of dissociating the active ingredient under pH, light and other stimuli makes them unique in cancer therapy. This paper reviews the current status of supramolecular nanomedicines in cancer therapy, elucidating the challenges faced and providing a theoretical basis for the efficient and precise treatment of malignant tumors.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujiao Wang
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Binghao Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoxi Zeng
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Sharma A, Park YR, Garg A, Lee BS. Deep Eutectic Solvents Enhancing Drug Solubility and Its Delivery. J Med Chem 2024; 67:14807-14819. [PMID: 39185938 DOI: 10.1021/acs.jmedchem.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Deep eutectic solvents (DES) are environmentally friendly solvents with the potential to dissolve bioactive compounds without affecting their characteristics. DES has special qualities that can be customized to meet the unique characteristics of a biomolecule/active pharmaceutical ingredient (API) in accordance with various therapeutic needs, providing a reliable approach in opening the door for the creation of cutting-edge drug formulations by resolving solubility issues in pharmaceutics. This study outlines newly developing approaches to solve the problem of inefficient API extraction due to poor solubility. These emerging strategies also have the capacity to alter the chemical and physical stability of API, which triggers drug's shelf life and their possible health benefits. It is anticipated that the highlighted methods and processes will be developed to capitalize on the DES potential to improve drug solubility and delivery in the pharmaceutical sector.
Collapse
Affiliation(s)
- Anshu Sharma
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Yea Rock Park
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Aman Garg
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Multidisciplinary Engineering, The NorthCap University, Gurugram, Haryana 122017, India
| | - Bong-Seop Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| |
Collapse
|
6
|
Lu X, He Y, Liu Y, Wang XP, Xue YL, Zheng ZY, Duan SY, Kong HL, Zhang RZ, Huang JL, Deng J, Duan P. Intergenerational toxic effects of parental exposure to [C n mim]NO 3 (n = 2,4,6) on nervous and skeletal development in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY 2023; 38:2204-2218. [PMID: 37300850 DOI: 10.1002/tox.23858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/21/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) are thought to have negative effects on human health. Researchers have explored the effects of ILs on zebrafish development during the early stages, but the intergenerational toxicity of ILs on zebrafish development has rarely been reported. Herein, parental zebrafish were exposed to different concentrations (0, 12.5, 25, and 50 mg/L) of [Cn mim]NO3 (n = 2, 4, 6) for 1 week. Subsequently, the F1 offspring were cultured in clean water for 96 h. [Cn mim]NO3 (n = 2, 4, 6) exposure inhibited spermatogenesis and oogenesis in F0 adults, even causing obvious lacunae in the testis and atretic follicle oocytes in ovary. After parental exposure to [Cn mim]NO3 (n = 2, 4, 6), the body length and locomotor behavior were measured in F1 larvae at 96 hours post-fertilization (hpf). The results showed that the higher the concentration of [Cn mim]NO3 (n = 2, 4, 6), the shorter the body length and swimming distance, and the longer the immobility time. Besides, a longer alkyl chain length of [Cn mim]NO3 had a more negative effect on body length and locomotor behavior. RNA-seq analysis revealed several downregulated differentially expressed genes (DEGs)-grin1b, prss1, gria3a, and gria4a-enriched in neurodevelopment-related pathways, particularly the pathway for neuroactive ligand-receptor interaction. Moreover, several upregulated DEGs, namely col1a1a, col1a1b, and acta2, were mainly associated with skeletal development. Expression of DEGs was tested by RT-qPCR, and the outcomes were consistent with those obtained from RNA-Seq. We provide evidence showing the effects of parental exposure to ILs on the regulation of nervous and skeletal development in F1 offspring, demonstrating intergenerational effects.
Collapse
Affiliation(s)
- Xin Lu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yue Liu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xin-Ping Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yu-Ling Xue
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zi-Yi Zheng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Su-Yang Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hong-Liang Kong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Rong-Zhi Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-Long Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Deng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Pharmacy, Hubei University of Medicine, China
| |
Collapse
|
7
|
Haghighat Bayan MA, Dias YJ, Rinoldi C, Nakielski P, Rybak D, Truong YB, Yarin AL, Pierini F. Near‐infrared light activated core‐shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on‐demand smart drug delivery applications. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw Poland
| | - Yasmin Juliane Dias
- Department of Mechanical and Industrial Engineering University of Illinois at Chicago Chicago Illinois USA
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw Poland
| | - Yen B. Truong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing Clayton Victoria Australia
| | - Alexander L. Yarin
- Department of Mechanical and Industrial Engineering University of Illinois at Chicago Chicago Illinois USA
- School of Mechanical Engineering Korea University Seoul Republic of Korea
| | - Filippo Pierini
- Department of Biosystems and Soft Matter Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw Poland
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing Clayton Victoria Australia
| |
Collapse
|
8
|
Monti GA, Falcone RD, Moyano F, Correa NM. Green AOT reverse micelles as nanoreactors for alkaline phosphatase. The hydrogen bond "dances" between water and the enzyme, the reaction product, and the reverse micelles interface. RSC Adv 2023; 13:1194-1202. [PMID: 36686944 PMCID: PMC9811498 DOI: 10.1039/d2ra06296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
In this work, we present an investigation of the influence of water encapsulated in 1,4-bis-2-ethylhexylsulfosuccinate/methyl laurate and 1,4-bis-2-ethylhexylsulfosuccinate/isopropyl myristate reverse micelles on the enzymatic hydrolysis of 1-naphthyl phosphate by alkaline phosphatase. Our results show that the enzyme is active in the biocompatible reverse micelles studied and that the Michaelis-Menten kinetic model is valid in all systems. We found that both micellar systems studied have a particular behavior toward pH and that the penetration of external solvents into the interfaces is crucial to understanding the effect. Methyl laurate does not disrupt the interface and is not necessary to control the pH value since alkaline phosphatase in the center of the micelles is always solvated similarly. In contrast, isopropyl myristate disrupts the interfaces so that the water and 1-naphthol molecules cannot form hydrogen bond interactions with the polar head of the surfactant. Then, when the water is at pH = 7, the 1-naphthol moves away to the interfaces inhibiting alkaline phosphatase which is not observable when the water is at pH = 10. Our study shows that the concept of pH cannot be used directly in a confined environment. In addition, our research is of great importance in the field of reactions that occur in reverse micelles, catalyzed by enzymes.
Collapse
Affiliation(s)
- Gustavo A Monti
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA, CONICET-UNRC), Departamento de Tecnología Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| | - R Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| | - Fernando Moyano
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| |
Collapse
|
9
|
Rajasree R, Ittiyavirah SP, Poonkuzhi Naseef P, Saheer Kuruniyan M, Elayadeth-Meethal M, Sankar S. The anti-inflammatory properties of the methanolic extract of Cucumis melo Linn. against prostate enlargement in Wistar rats. Saudi J Biol Sci 2022; 29:103396. [PMID: 35942162 PMCID: PMC9356295 DOI: 10.1016/j.sjbs.2022.103396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
In different parts of the world, Cucumis melo Linn. (C melo) is used for its medicinal properties. The present study examined the effects of a methanolic extract of C melo Linn. (F1 hybrid, MECM) on benign prostatic hyperplasia in adult male Wistar rats and evaluated its anti-inflammatory activity in vivo. MECM treatment reduced prostate weight mildly. Histopathological studies showed that the extract produced a strong protective effect against the development of BPH by testosterone. The MECM also showed protection from testosterone-induced benign prostatic hyperplasia (BPH). MECM was tested against carrageenan-induced inflammation in rats' paws to determine its anti-inflammatory activity. It was shown that MECM had a pronounced effect on the inflammatory response in the late phase, i.e., one hour after carrageenan injection. Prostaglandins and nitric oxide are primarily responsible for this phase indicating that MECM can modify the production and release of prostaglandin and nitric oxide. A novel formulation containing C melo may be able to treat the conditions mentioned above.
Collapse
Affiliation(s)
- R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Sibi P. Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences Cheruvandoor, Kottayam 686631, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India
- Corresponding author.
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - S Sankar
- Department of Pathology, Govt Medical College, Kottayam 686008, India
| |
Collapse
|
10
|
Gaikwad N, Kudal S, Avachat AM. Choline-Amino Acid-Derived Bio-ionic Liquids for Solubility Enhancement of Zafirlukast. AAPS PharmSciTech 2022; 23:146. [PMID: 35585441 DOI: 10.1208/s12249-022-02296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the application of bio-ionic liquids (ILs) prepared from choline as cation and amino acid as anion for solubility enhancement of poorly water-soluble drug, Zafirlukast (ZFL). Herein, the solubility of ZFL in water and mixtures of water and ILs was assessed using UV spectroscopy at two temperature points 25°C and 37°C with increasing concentrations of IL. ZFL solubility was found to improve linearly with increasing concentration of [Ch][Pro] in water, representing 35- to 37-fold improvement in ZFL solubility at maximum concentration of [Ch][Pro] (1% w/v) compared to when only pure water was present. Also, the effect of IL on ZFL solubility was analyzed using NMR, DSC, and TGA. These results clearly suggest that ZFL solubility was increased by forming hydrogen bonds with selected [Ch][Pro] IL. Toxicity study of ILs was tested against gram-positive and gram-negative bacteria. Since IL solvent was found to increase the solubility of ZFL, this may serve as "functional excipient solvent" for solubility enhancement in its commercialized formulations.
Collapse
|
11
|
Koszałka P, Stasiłojć G, Miękus-Purwin N, Niedźwiecki M, Purwin M, Grabowski S, Bączek T. The Cooperative Anti-Neoplastic Activity of Polyphenolic Phytochemicals on Human T-Cell Acute Lymphoblastic Leukemia Cell Line MOLT-4 In Vitro. Int J Mol Sci 2022; 23:ijms23094753. [PMID: 35563141 PMCID: PMC9099961 DOI: 10.3390/ijms23094753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/01/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting pediatric patients. ALL treatment regimens with cytostatics manifest substantial toxicity and have reached the maximum of well-tolerated doses. One potential approach for improving treatment efficiency could be supplementation of the current regimen with naturally occurring phytochemicals with anti-cancer properties. Nutraceuticals such as quercetin, curcumin, resveratrol, and genistein have been studied in anti-cancer therapy, but their application is limited by their low bioavailability. However, their cooperative activity could potentially increase their efficiency at low, bioavailable doses. We studied their cooperative effect on the viability of a human ALL MOLT-4 cell line in vitro at the concentration considered to be in the bioavailable range in vivo. To analyze their potential side effect on the viability of non-tumor cells, we evaluated their toxicity on a normal human foreskin fibroblast cell line (BJ). In both cell lines, we also measured specific indicators of cell death, changes in cell membrane permeability (CMP), and mitochondrial membrane potential (MMP). Even at a low bioavailable concentration, genistein and curcumin decreased MOLT-4 viability, and their combination had a significant interactive effect. While resveratrol and quercetin did not affect MOLT-4 viability, together they enhanced the effect of the genistein/curcumin mix, significantly inhibiting MOLT-4 population growth in vitro. Moreover, the analyzed phytochemicals and their combinations did not affect the BJ cell line. In both cell lines, they induced a decrease in MMP and correlating CMP changes, but in non-tumor cells, both metabolic activity and cell membrane continuity were restored in time. (4) Conclusions: The results indicate that the interactive activity of analyzed phytochemicals can induce an anti-cancer effect on ALL cells without a significant effect on non-tumor cells. It implies that the application of the combinations of phytochemicals an anti-cancer treatment supplement could be worth further investigation regardless of their low bioavailability.
Collapse
Affiliation(s)
- Patrycja Koszałka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki Street 1, 80-211 Gdańsk, Poland; (P.K.); (G.S.)
| | - Grzegorz Stasiłojć
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki Street 1, 80-211 Gdańsk, Poland; (P.K.); (G.S.)
| | - Natalia Miękus-Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Debinki Street 7, 80-211 Gdańsk, Poland;
| | - Maciej Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
| | - Szymon Grabowski
- GetResponse Cares Foundation, Arkońska Street 6/A3, 80-387 Gdańsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
- Correspondence:
| |
Collapse
|
12
|
Shen Q, Zhu T, Wu C, Xu Y, Li C. Ultrasonic-assisted extraction of zeaxanthin from Lycium barbarum L. with composite solvent containing ionic liquid: Experimental and theoretical research. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|