1
|
Culbreath CJ, McCullen SD, Mefford OT. Evaluation of Post-Processing on Additive Manufactured Bioresorbable Polymers for Medical Devices. ACS APPLIED BIO MATERIALS 2024; 7:7170-7182. [PMID: 39475536 DOI: 10.1021/acsabm.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Additive manufacturing (AM) has seen massive growth in the medical device sector and an increase in the clearance of devices. Many challenges still exist in the design, development, and clinical use of AM-fabricated devices, notably the processing, annealing, and sterilization of resorbable polymers. In addition, the use of these materials continues to grow in medical devices and scaffold technologies for tissue engineering and regenerative medicine (TERM). Specifically, this study focused on the scaffold mechanical properties post-processing and throughout a simulated resorption (in vitro) study. Herein, we evaluated three (3) materials that span a range of mechanical properties and degradation rates relating to a range of tissue healing rates and mechanical properties affording the opportunity of biomimetic potentials, Caproprene 100M, Lactoflex 7415, and Lactoprene 100M. These bioresorbable polymers were additively manufactured into scaffold forms of Type V tensile bars to investigate post-processing parameters. A range of heat treatments were then performed after the AM process to induce a range of semicrystalline morphologies, and subsequently, two different sterilization techniques were performed, one based on super critical carbon dioxide and another using electron beam radiation. It was statistically shown that the heat treatment parameters and the sterilization method had statistically significant effects on the scaffold properties of each material. While material differences were responsible for the majority of the mechanical property breadth, techniques utilizing analysis of variance allowed the observation of significant effects and interactions associated with heat treatment, sterilization, and material parameters (alpha = 0.05). The characterization of the sample groups provided insight into the process-structure-property-performance relationships of the resorbable scaffold samples. It was established that the post-processing impacted the scaffold structures, and therefore, sterilization and heat treatment selections should be included within initial design considerations alongside material selection as critical for device development, especially when AM bioresorbable scaffolds for TERM.
Collapse
Affiliation(s)
- Clayton J Culbreath
- Poly-Med, Inc., Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Seth D McCullen
- Poly-Med, Inc., Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - O Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
Xu M, Chen A, Chen D, Wu S, Deng Z, Wen H, Zhong H, Lu K, Tang J, Ma D, Zhang H. Preparation, characterization, and in vitro/vivo evaluation of a multifunctional electrode coating for cochlear implants. BIOMATERIALS ADVANCES 2024; 157:213736. [PMID: 38128170 DOI: 10.1016/j.bioadv.2023.213736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cochlear implantation (CI) is the primary intervention for patients with sensorineural hearing loss to restore their hearing. However, approximately 90 % of CI recipients experience unexpected fibrosis around the inserted electrode arrays due to acute and chronic inflammation. This fibrosis leads to progressive residual hearing loss. Addressing this complication is crucial for enhancing CI outcomes, yet an effective treatment has not yet been found. In this study, we developed a multifunctional dexamethasone (DXM)-loaded polytrimethylene carbonate (PTMC) electrode coating to mitigate inflammatory reactions and fibrosis after CI. This thin and flexible coating could preserve the mechanical performance of the electrode and reduce the implantation resistance for CI. The in vitro release studies demonstrated the DXM-PTMC coating's efficient drug loading and sustained release capability over 90 days. DXM-PTMC also showed long-term stability, high biocompatibility, and effective anti-inflammatory effects in vitro and in vivo. Compared with the uncoated group, DXM-PTMC coating significantly inhibited the expression of inflammatory factors, such as NO, TNF-α, IL-1β, and IL-6. DXM-PTMC coating suppressed fibrosis in rat implantation models for 3 weeks by reducing both acute and chronic inflammation. Our findings suggest that DXM-PTMC coating is a novel strategy to improve the outcomes of CI.
Collapse
Affiliation(s)
- Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shengquan Wu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhipeng Deng
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hang Wen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huiling Zhong
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kejin Lu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
3
|
Chae S, Yong U, Park W, Choi YM, Jeon IH, Kang H, Jang J, Choi HS, Cho DW. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater 2023; 19:611-625. [PMID: 35600967 PMCID: PMC9109128 DOI: 10.1016/j.bioactmat.2022.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Owing to the prevalence of rotator cuff (RC) injuries and suboptimal healing outcome, rapid and functional regeneration of the tendon–bone interface (TBI) after RC repair continues to be a major clinical challenge. Given the essential role of the RC in shoulder movement, the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair. Here, we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology. In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI. The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model. In particular, we adopted nondestructive, consecutive, and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo. Furthermore, the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo. In summary, this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration, demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces. A biomimetic cellular TBI scaffold was 3D bioprinted with dECM bioinks. A gradient multi-tissue construct was implanted for RC repair in vivo. Targeted NIR fluorescence imaging facilitated real-time monitoring of TBI regeneration. The scaffolds had therapeutic contribution on gradient TBI regeneration and functional recovery.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- EDmicBio Inc., 111 Hoegi-ro, Dongdaemun-gu, Seoul 02445, South Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - Yoo-mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - In-Ho Jeon
- Department of Orthopaedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeongwon-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, 149 13th Street, Boston, MA, 02114, USA
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, 149 13th Street, Boston, MA, 02114, USA
- Corresponding author.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Corresponding author. Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Kyungbuk, South Korea.
| |
Collapse
|
4
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
5
|
Hou Z, Chen S, Hu W, Guo J, Li P, Hu J, Yang L. Long-term in vivo degradation behavior of poly(trimethylene carbonate-co-2, 2′-dimethyltrimethylene carbonate). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Overview: Polycarbonates via Ring-Opening Polymerization, Differences between Six- and Five-Membered Cyclic Carbonates: Inspiration for Green Alternatives. Polymers (Basel) 2022; 14:polym14102031. [PMID: 35631913 PMCID: PMC9147941 DOI: 10.3390/polym14102031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
This review aims to cover the topic of polycarbonate synthesis via ring-opening polymerization (ROP) of cyclic carbonates. We report a wide variety of ROP-initiating systems along with their detailed mechanisms. We focus on the challenges of preparing the polymers; the precise control of the properties of the materials, including molecular weight; the compositions of the copolymers and their structural characteristics. There is no one approach that works for all scales in cyclic carbonates ROP. A green process to produce polycarbonates is a luring challenge in terms of CO2 utilization and the targeted domains for application. The main resolution seems to be the use of controlled incorporation of functional/reactive groups into polymer chains that can tailor the physicochemical and biological properties of the polymer matrices, producing what appears to be an unlimited field of applications. Glycerol carbonate (GC) is prepared from renewable glycerol and considered as a CO2 fixation agent resulting in GC compound. This family of five-membered cyclic carbonates has attracted the attention of researchers as potential monomers for the synthesis of polycarbonates (PCs). This cyclic carbonate group presents a strong alternative to Bisphenol A (BPA), which is used mainly as a monomer for the production of polycarbonate and a precursor of epoxy resins. As of December 2016, BPA is listed as a substance of very high concern (SVHC) under the REACH regulation. In 2006, Mouloungui et al. reported the synthesis and oligomerization of GCs. The importance of GCs goes beyond their carbonate ring and their physical properties (high boiling point, high flash point, low volatility, high electrical conductivity) because they also contain a hydroxyl group. The latter offers the possibility of producing oligo and/or polycarbonate compounds that have hydroxyl groups that can potentially lead to different reaction mechanisms and the production of new classes of polycarbonates with a wide range of applications.
Collapse
|
7
|
Miyake R, Maehara A, Chanthaset N, Ajiro H. Thermal Property Control by Copolymerization of Trimethylene Carbonate and Its Derivative Bearing Triphenylmethyl Group. ChemistrySelect 2022. [DOI: 10.1002/slct.202104326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rikyu Miyake
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akari Maehara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Nalinthip Chanthaset
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroharu Ajiro
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
- Data Science Center Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|