1
|
de Alencar FMS, Gouveia FS, Oliveira GDFSD, Andrade AL, Vasconcelos MAD, Ayala AP, Gondim ACS, Carvalho IMMD, Moraes CAF, Palmeira-Mello MV, Batista AA, Lopes LGDF, Sousa EHS. Terpyridine-based ruthenium complexes containing a 4,5-diazafluoren-9-one ligand with light-driven enhancement of biological activity. Dalton Trans 2024. [PMID: 39686803 DOI: 10.1039/d4dt02562h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
There has been growing effort in the scientific community to develop new antibiotics to address the major threat of bacterial resistance. One promising approach is the use of metal complexes that provide broader opportunities. Among these systems, polypyridine-ruthenium(II) complexes have received particular attention as drug candidates. Here, we prepared two new ruthenium(II) complexes with the formulation [Ru(DFO)(phtpy-R)Cl](PF6), where phtpy = 4'-phenyl-2,2':6',2''-terpyridine; R = -H(MPD1), -CH3(MPD2); and DFO = 4,5-diazafluoren-9-one, and investigated their chemical, biochemical and antibacterial activities. These compounds exhibit photoreactivity and produce reactive oxygen species (ROSs). Photogeneration of singlet oxygen (1O2) was measured in acetonitrile with significant quantum yields using blue light, Φ = 0.40 and 0.39 for MDP1 and MPD2, respectively. Further studies have shown that MPD1 and MPD2 can generate superoxide radicals. Antibacterial assays demonstrated a significant enhancement in MIC (minimum inhibitory concentration) upon blue light irradiation (>32-fold), with MICs of 15.6 μg mL-1 (S. aureus, ATCC 700698) and 3.9 μg mL-1 (S. epidermidis, ATCC 35984) for both metal complexes. Interestingly, an MIC of 15.6 μg mL-1 for MPD1 and MPD2 was observed against S. epidermidis ATCC 12228 under red light irradiation. The latter results are encouraging, considering that red light penetrates deeper into the skin. In addition, no significant cytotoxicity was observed in some mammalian cells, even upon light irradiation, supporting their potential safety. Altogether, these data show evidence of the potential use of these compounds as antimicrobial photodynamic therapeutic agents, enriching our arsenal to combat this worldwide bacterial threat.
Collapse
Affiliation(s)
| | - Florencio Sousa Gouveia
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Brazil.
| | | | - Alexandre Lopes Andrade
- Integrated Biomolecular Laboratory, Department of Pathology and Legal Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | | | - Ana Claudia Silva Gondim
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Brazil.
| | | | | | - Marcos V Palmeira-Mello
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Luiz Gonzaga de França Lopes
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Brazil.
| | - Eduardo Henrique Silva Sousa
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Cao N, Jiang Y, Song ZB, Chen D, Wu D, Chen ZL, Yan YJ. Synthesis and evaluation of novel meso-substitutedphenyl dithieno[3,2-b]thiophene-fused BODIPY derivatives as efficient photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 264:116012. [PMID: 38056302 DOI: 10.1016/j.ejmech.2023.116012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The discovery of new photosensitizer drugs with long wavelength Uv-vis absorption, high efficiency and low side-effects is still a challenge in photodynamic therapy. Here a series of novel meso-substitutedphenyl thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. All these compounds have strong absorption at 640-680 nm and obvious fluorescence emission at 650-760 nm. They exhibited high singlet oxygen generation ability and significant photodynamic efficiency against Eca-109 cancer cells. Compounds II4, II6, II9, II10 and II13 could generate intracellular ROS and induce cell apoptosis after laser irradiation, which displayed superior photodynamic efficiency against Eca-109 cells than Temoporfin in vitro and in vivo. Among them, compound II4 specifically exhibited excellent anti-tumor efficacy, and could be selected as a new drug candidate for PDT.
Collapse
Affiliation(s)
- Ning Cao
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Ying Jiang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Zhi-Bing Song
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Danye Chen
- Department of Chemistry, Imperial College of London, London, SW72AZ, UK
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons, 123 St Stephen's Green, Dublin, 2, Ireland
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai, 201620, China.
| |
Collapse
|
4
|
Fahad S, Li S, Zhai Y, Zhao C, Pikramenou Z, Wang M. Luminescence-Based Infrared Thermal Sensors: Comprehensive Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304237. [PMID: 37679096 DOI: 10.1002/smll.202304237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Indexed: 09/09/2023]
Abstract
Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.
Collapse
Affiliation(s)
- Shah Fahad
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Song Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yufei Zhai
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cong Zhao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Gurgul I, Mazuryk O, Rutkowska-Zbik D, Łomzik M, Krasowska A, Pietrzyk P, Stochel G, Brindell M. Microwave-assisted synthesis and photodynamic activity of tris-heteroleptic Ru(II) complexes with asymmetric polypyridyl ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Mirzaei-Kalar Z, Kiani Nejad Z, Khandar AA. New ZnFe2O4@SiO2@graphene quantum dots as an effective nanocarrier for targeted DOX delivery and CT-DNA binder. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Li X, Xie S, Shen J, Chen S, Yan J. Construction of functionalized ruthenium-modified selenium coated with pH-responsive silk fibroin nanomaterials enhanced anticancer efficacy in hepatocellular cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ryan GJ, Gunnlaugsson T, Quinn SJ. Hook, Line, and Sinker! Spectroscopic Studies of Bi-Modular Mono- and Bis-1,8-naphthalimide-Ru(bpy) 3-conjugates as DNA "Light Switches". Inorg Chem 2022; 61:12073-12086. [PMID: 35876859 PMCID: PMC9364415 DOI: 10.1021/acs.inorgchem.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bi-chromophoric ruthenium polypyridyl complexes comprising one or two nitro-1,8-naphthalimide groups are shown to be effective DNA binders with off-on light switching properties. The binding to DNA was investigated using a combination of studies such as UV-visible absorption and emission titrations, thermal denaturation, and circular dichroism spectroscopy. The DNA affinity was shown to be sensitive to both the linker length and the number of naphthalimides (one vs two) contained in these systems and binding constants ranging from 106 to 107 M-1 for salmon testes DNA. The strong DNA binding is attributed to the combination of naphthalimide intercalation and the electrostatic interaction of the ruthenium complex. Large emission enhancements from the metal to ligand charge transfer (MLCT) emission arising from the metal complex were observed upon DNA binding, which was attributed to the interruption of intramolecular electron transfer quenching processes. Moving the nitro substitution from the 4-position to the 3-position is found to result in modification of the DNA binding and the resulting optical properties. The off-on light switch phenomena reported demonstrate the potential of these complexes to act as DNA probes.
Collapse
Affiliation(s)
- Gary J Ryan
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.,Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland.,Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
9
|
Unravelling the role of [Ru(bpy) 2(OH 2) 2] 2+ complexes in photo-activated chemotherapy. J Inorg Biochem 2022; 235:111930. [PMID: 35841722 DOI: 10.1016/j.jinorgbio.2022.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
Abstract
Photoactivated chemotherapy (PACT) has emerged as a promising strategy to selectively target cancer cells by using light irradiation to generate cytotoxic complexes in situ through a mechanism involving ligand-loss. Due to their rich optical properties and excited state chemistry, Ru polypyridyl complexes have attracted significant attention for PACT. However, studying PACT is complicated by the fact that many of these Ru complexes can also undergo excited-state electron transfer to generate 1O2 species. In order to deconvolute the biological roles of possible photo-decomposition products without the added complication of excited-state electron transfer chemistry, we have developed a methodology to systematically investigate each product individually, and assess the structure-function relationship. Here, we synthesized a series of eight distinct Ru polypyridyl complexes: Ru-Xa ([Ru(NN)3]2+), Ru-Xb ([Ru(NN)2py2]2+), and Ru-Xc ([Ru(NN)(OH2)2]2+) where NN = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, or dimethyl 2,2'-bipyridine-4,4'-dicarboxylate and py = pyridine. The cytotoxicity of these complexes was investigated in two cell lines amenable to PACT: H23 (breast cancer) and T47D (lung cancer). We confirmed that light irradiation of Ru-Xa and Ru-Xb complexes generate Ru-Xc complexes through UV-visible spectroscopy, and observed that the Ru-Xc complexes are the most toxic against the cancer cell lines. In addition, we have shown that ligand release and biological activity including bovine serum albumin (BSA) binding, lipophilicity, and DNA interaction are altered when different groups are appended to the bipyridine ligands. We believe that the methodology presented here will enhance the development of more potent and selective PACT agents moving forward.
Collapse
|
10
|
Synthesis, Characterization and Biological Properties of Ruthenium(II) Polypyridyl Complexes Containing 2(1H)-quinolinone-3(1H-imidazo[4,5f][1,10]phenanthrolin-2-yl. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Toupin NP, Steinke SJ, Herroon MK, Podgorski I, Turro C, Kodanko JJ. Unlocking the Potential of Ru(II) Dual-action Compounds with the Power of the Heavy-atom Effect. Photochem Photobiol 2021; 98:378-388. [PMID: 34866185 DOI: 10.1111/php.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
We report the synthesis, photochemical and biological characterization of two new Ru(II) photoactivated complexes based on [Ru(tpy)(Me2 bpy)(L)]2+ (tpy = 2,2':6',2''-terpyridine, Me2 bpy = 6,6'-dimethyl-2,2'-bipyridine), where L = pyridyl-BODIPY (pyBOD). Two pyBOD ligands were prepared bearing flanking hydrogen or iodine atoms. Ru(II)-bound BODIPY dyes show a red-shift of absorption maxima relative to the free dyes and undergo photodissociation of BODIPY ligands with green light irradiation. Addition of iodine into the BODIPY ligand facilitates intersystem crossing, which leads to efficient singlet oxygen production in the free dye, but also enhances quantum yield of release of the BODIPY ligand from Ru(II). This represents the first report of a strategy to enhance photodissociation quantum yields through the heavy-atom effect in Ru(II) complexes. Furthermore, Ru(II)-bound BODIPY dyes display fluorescence turn-on once released, with a lead analog showing nanomolar EC50 values against triple negative breast cancer cells, >100-fold phototherapeutic indexes under green light irradiation, and higher selectivity toward cancer cells as compared to normal cells than the corresponding free BODIPY photosensitizer. Conventional Ru(II) photoactivated complexes require nonbiorthogonal blue light for activation and rarely show submicromolar potency to achieve cell death. Our study represents an avenue for the improved photochemistry and potency of future Ru(II) complexes.
Collapse
Affiliation(s)
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
| | - Mackenzie K Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
| | | |
Collapse
|