1
|
Bhattacharya S, Raval H, Bhirud D. Hyaluronic acid-functionalized carboxymethyl dextran-coated melatonin nanoconjugates for targeted etoposide delivery in metastatic colon cancer: Extensive in-vitro investigation in HCT116 cell lines, antimicrobial efficacy, and anti-angiogenic potential in chick chorioallantoic membrane (CAM) assay. Int J Biol Macromol 2024; 281:136373. [PMID: 39395515 DOI: 10.1016/j.ijbiomac.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Managing advanced colon cancer is challenging, requiring targeted therapies. This study presents a novel nanoconjugate system, HA-CMD@ETP-MLT-NCs, designed to deliver etoposide (ETP) specifically to colon cancer cells. The system consists of Hyaluronic Acid (HA)-Functionalized Carboxymethyl Dextran (CMD) coated with Melatonin (MLT). The nanoconjugates showed good stability, with a zeta potential of -29.90 mV and a particle size of 199.1 nm. They achieved an 80.3 % yield and a high drug entrapment efficiency of 93.4 %. In vitro release studies demonstrated pH-dependent drug release, with 73.4 % released at pH 5.5 (tumour-like environment) and 42.6 % at pH 7.4 (normal tissue) over 24 h. The nanoconjugates improved cellular uptake, induced apoptosis, and reduced reactive oxygen species (ROS) in HCT116 colon cancer cells. Flow cytometry showed a significant decrease in ROS levels, and lipid peroxidation inhibition increased to 56.67 %. These findings suggest that HA-CMD@ETP-MLT-NCs enhance etoposide delivery and reduce side effects. Further in vivo studies and clinical trials are needed to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Harshvardhan Raval
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
2
|
Mishra S, Shah H, Patel A, Tripathi SM, Malviya R, Prajapati BG. Applications of Bioengineered Polymer in the Field of Nano-Based Drug Delivery. ACS OMEGA 2024; 9:81-96. [PMID: 38222544 PMCID: PMC10785663 DOI: 10.1021/acsomega.3c07356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
The most favored route of drug administration is oral administration; however, several factors, including poor solubility, low bioavailability, and degradation, in the severe gastrointestinal environment frequently compromise the effectiveness of drugs taken orally. Bioengineered polymers have been developed to overcome these difficulties and enhance the delivery of therapeutic agents. Polymeric nanoparticles, including carbon dots, fullerenes, and quantum dots, have emerged as crucial components in this context. They provide a novel way to deliver various therapeutic materials, including proteins, vaccine antigens, and medications, precisely to the locations where they are supposed to have an effect. The promise of this integrated strategy, which combines nanoparticles with bioengineered polymers, is to address the drawbacks of conventional oral medication delivery such as poor solubility, low bioavailability, and early degradation. In recent years, we have seen substantially increased interest in bioengineered polymers because of their distinctive qualities, such as biocompatibility, biodegradability, and flexible physicochemical characteristics. The different bioengineered polymers, such as chitosan, alginate, and poly(lactic-co-glycolic acid), can shield medications or antigens from degradation in unfavorable conditions and aid in the administration of drugs orally through mucosal delivery with lower cytotoxicity, thus used in targeted drug delivery. Future research in this area should focus on optimizing the physicochemical properties of these polymers to improve their performance as drug delivery carriers.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Department
of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Harshil Shah
- Cosette
Pharmaceuticals Inc., South
Plainfield, New Jersey 07080, United States
| | - Artiben Patel
- Cosette
Pharmaceuticals Inc., South
Plainfield, New Jersey 07080, United States
| | - Shivendra Mani Tripathi
- Department
of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Rishabha Malviya
- Department
of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Noida, Uttar Pradesh 203201, India
| | - Bhupendra G. Prajapati
- Shree
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
3
|
Dar AH, Ahmad A, Kumar A, Gowri V, Jori C, Sartaliya S, K M N, Ali N, Bishnoi M, Khan R, Jayamurugan G. Superior Photophysical and Photosensitizing Properties of Nanoaggregates of Weakly Emissive Dyes for Use in Bioimaging and Photodynamic Therapy. Biomacromolecules 2023; 24:5438-5450. [PMID: 37856822 DOI: 10.1021/acs.biomac.3c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The development of luminescent dyes based on 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) is an active research area, and a quantum yield (ΦF) of 7.8% has been achieved so far in cyclohexane by appending a fluorophore. Our novel method radically refines weakly emissive 2,3-disubstituted TCBD (phenyl-TCBD 1) (ΦF = 2.3% in CH3CN) into a water-soluble, biocompatible nanoformulation as highly emissive aggregates 1NPs ⊂ PF-127 with ΦF = 7.9% in H2O and without fluorophore conjugation. Characterization of 1NPs ⊂ PF-127 was carried out using various spectroscopic techniques, and its predominant size was found to be 80-100 nm according to transmission electron microscopy and dynamic light scattering techniques. Spectroscopic studies including Fourier transform infrared spectroscopy revealed that aggregated phenyl-TCBD particles were encapsulated in a nonluminescent triblock copolymer (PF-127)-based nanomicelles with the TCBD entrapment efficiency of 77%. With increasing water fraction, the phenyl-TCBD nanoaggregates exhibited a 3-fold higher quantum yield, a greater lifetime, and a red shift (155 nm). This remarkable enhancement in red emissivity enabled them to be used as a bioprobe for bioimaging applications and in photodynamic therapy to selectively target cancer cell lines with singlet oxygen generation capability (ΦΔ = 0.25). According to the MTT assay, compared to the native molecular form (1229 nM), the aggregated 1NPs ⊂ PF-127 (13.51 nM) exhibited dose-dependent cell death when exposed to light with 91-fold increased activity. The histoarchitectures of various vital organs (liver, kidneys, heart, lungs, and spleen) were intact when tested for in vivo biocompatibility. This study has significant implications for developing nonplanar push-pull chromophore-based dyes as biosensors and with potential applications beyond bioimaging.
Collapse
Affiliation(s)
- Arif Hassan Dar
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Vijayendran Gowri
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Shaifali Sartaliya
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Neethu K M
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Mohali, 140306 Punjab, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Govindasamy Jayamurugan
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| |
Collapse
|
4
|
Pouya FD, Salehi R, Rasmi Y, Kheradmand F, Fathi-Azarbayjani A. Combination chemotherapy against colorectal cancer cells: Co-delivery of capecitabine and pioglitazone hydrochloride by polycaprolactone-polyethylene glycol carriers. Life Sci 2023; 332:122083. [PMID: 37717622 DOI: 10.1016/j.lfs.2023.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Colorectal cancer causes numerous deaths despite many treatment options. Capecitabine (CAP) is the standard chemotherapy regimen for colorectal cancer, and pioglitazone hydrochloride (PGZ) for diabetic disease treatment. However, free drugs do not induce effective apoptosis. This work aims to co-encapsulate CAP and PGZ and evaluate cytotoxic and apoptotic effects on HCT-119, HT-29 colorectal cancer cells, and human umbilical vein endothelial cells (HUVECs). METHOD CAP, PGZ, and combination treatment nano-formulations were prepared by triblock (TB) (PCL-PEG-PCL) biodegradable copolymers to enhance drugs' bioavailability as anti-cancer agents. The Ultrasonic homogenization method was used for preparing nanoparticles. The physicochemical characteristics of nanoparticles were studied using 1H NMR, FTIR, DLS, and FESEM techniques. The zeta potential, entrapment efficiency, drug release, and storage stability were studied. Also, cell viability and apoptosis were examined by using MTT, acridine orange (AO), and propidium iodide (PI), respectively. RESULT The smaller hydrodynamic size (236.1 nm), polydispersity index (0.159), and zeta potential (-20.8 mV) were observed in nanoparticles. Nanoparticles revealed a proper formulation and storage stability at 25 °C than 4 °C in 90 days. The synergistic effect was observed in (CAP-PGZ)-loaded TB nanoparticles in HUVEC, HCT-116, and HT-29 cells. In (AO/PI) staining, the high percentage of apoptotic cells in the (CAP-PGZ)-loaded TB nanoparticles in HUVEC, HCT-116, and HT-29 were calculated as 78 %, 71.66 %, and 69.31 %, respectively. CONCLUSION The (CAP-PGZ)-loaded TB nanoparticles in this research offer an effective strategy for targeted combinational colorectal cancer therapy.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Roya Salehi
- Department of Medical Nanotechnology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Bhattacharya S, Bonde S, Hatware K, Sharma S, Anjum MM, Sahu RK. Physicochemical characterization, in vitro and in vivo evaluation of chitosan/carrageenan encumbered with Imatinib mesylate-polysarcosine nanoparticles for sustained drug release and enhanced colorectal cancer targeted therapy. Int J Biol Macromol 2023; 245:125529. [PMID: 37379942 DOI: 10.1016/j.ijbiomac.2023.125529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The objective of this investigation was to fabricate nanoparticles consisting of Imatinib mesylate-poly sarcosine-loaded chitosan/carrageenan in order to attain prolonged drug release and efficacious therapy for colorectal cancer. The study involved the synthesis of nanoparticles through the utilisation of ionic complexation and nanoprecipitation techniques. The subsequent nanoparticles were subjected to an assessment of their physicochemical characteristics, anti-cancer efficacy using HCT116 cell line, and acute toxicity. The present study examined two distinct nanoparticle formulations, namely IMT-PSar-NPs and CS-CRG-IMT-NPs, with respect to their particle size, zeta potential, and morphology. Both formulations demonstrated satisfactory characteristics, as they displayed consistent and prolonged drug release for a duration of 24 h, with the highest level of release occurring at a pH of 5.5. The efficacy and safety of IMT-PSar-NPs and CS-CRG-IMT-PSar-NPs nanoparticles were evaluated through various tests including in vitro cytotoxicity, cellular uptake, apoptosis, scratch test, cell cycle analysis, MMP & ROS estimate, acute toxicity, and stability tests. The results suggest that these nanoparticles were well fabricated and have promising potential for in vivo applications. The prepared polysaccharide nanoparticles have great potential for active targeting and could potentially reduce dose-dependent toxicity in the treatment of colon cancer.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Smita Bonde
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Ketan Hatware
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar 844102, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, P.O. Kilkileshwar, Via Kritinagar, Distt. Tehri Garhwal Pin-249161, Uttarakhand, India
| |
Collapse
|
6
|
Jain A, Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Front Oncol 2023; 13:1211603. [PMID: 37427139 PMCID: PMC10325729 DOI: 10.3389/fonc.2023.1211603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy that affects a large percentage of the global population. The conventional treatments for CRC have a number of limitations. Nanoparticles have emerged as a promising cancer treatment method due to their ability to directly target cancer cells and regulate drug release, thereby enhancing therapeutic efficacy and minimizing side effects. This compilation examines the use of nanoparticles as drug delivery systems for CRC treatment. Different nanomaterials can be used to administer anticancer drugs, including polymeric nanoparticles, gold nanoparticles, liposomes, and solid lipid nanoparticles. In addition, we discuss recent developments in nanoparticle preparation techniques, such as solvent evaporation, salting-out, ion gelation, and nanoprecipitation. These methods have demonstrated high efficacy in penetrating epithelial cells, a prerequisite for effective drug delivery. This article focuses on the various targeting mechanisms utilized by CRC-targeted nanoparticles and their recent advancements in this field. In addition, the review offers descriptive information regarding numerous nano-preparative procedures for colorectal cancer treatments. We also discuss the outlook for innovative therapeutic techniques in the management of CRC, including the potential application of nanoparticles for targeted drug delivery. The review concludes with a discussion of current nanotechnology patents and clinical studies used to target and diagnose CRC. The results of this investigation suggest that nanoparticles have great potential as a method of drug delivery for the treatment of colorectal cancer.
Collapse
|
7
|
Dave R, Patel R, Patel M. Hybrid Lipid-Polymer Nanoplatform: A Systematic Review for Targeted Colorectal Cancer Therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
9
|
Ahmad A, Prakash R, Khan MS, Altwaijry N, Asghar MN, Raza SS, Khan R. Nanoparticle-Mediated PRDX2 Inhibition for Specific Targeting of CHK2-Null Colorectal Cancer. ACS Biomater Sci Eng 2022; 8:5210-5220. [PMID: 36446128 DOI: 10.1021/acsbiomaterials.2c01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic lethality is a pragmatic targeted cancer therapy approach in which cancer cells harboring genetic alterations are exploited for the specific killing of cancer cells. Earlier, we have established a synthetic lethal (SL) interaction between two genes that are CHK2 and PRDX2 in colorectal cancer (CRC) cells. The SL interaction between CHK2 and PRDX2 resulted in selective targeting of CHK2-defective CRC cells. N-Carbamoyl alanine (NCA) is a PRDX2 inhibitor and is a peptide-like organic compound, which degrades after oral administration in harsh gastric pH. To overcome the limitations of NCA, a chitosan-based nanocarrier was developed for the entrapment of NCA. In this study, we targeted the SL interaction between PRDX2 and CHK2 using NCA-loaded chitosan nanoparticles (NCA-Chit NPs) to selectively inhibit the CHK2-null HCT116 cells. NCA-Chit NPs were assessed for various physicochemical characterizations such as the hydrodynamic diameter (size), zeta potential, and polydispersity index using a Zetasizer. Additionally, morphological studies for the shape and size of NPs were confirmed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Cellular uptake of NPs was confirmed using confocal microscopy, which exhibited that nanoparticles were able to internalize into the HCT116 cells. Blank Chit NPs were found to be cytocompatible as they did not exert any cytotoxic effects on hTERT, L929, and Caco-2 cells (intestinal epithelial cells). Importantly, NCA-Chit NPs were quite hemocompatible also. In the form of an NCA-chitosan nanoformulation, the efficacy was enhanced by about 8 times compared to free form of NCA towards selective killing of CHK2-null HCT116 cells as compared to HCT116 cells. The chitosan-based nanoformulation for NCA was developed to augment the efficacy of the NCA for enhanced cell death of colorectal cancer cells having CHK2 defects.
Collapse
Affiliation(s)
- Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, Punjab, India
| | - Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow226003, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Riyadh Province11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Riyadh Province11451, Saudi Arabia
| | - Muhammad Nadeem Asghar
- Department of Medical Biology, University of Québec at Trois-Rivieres, Trois-Rivieres, QuébecG9A 5H7, Canada
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow226003, Uttar Pradesh, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, Punjab, India
| |
Collapse
|
10
|
Madej M, Kurowska N, Strzalka-Mrozik B. Polymeric Nanoparticles—Tools in a Drug Delivery System in Selected Cancer Therapies. APPLIED SCIENCES 2022; 12:9479. [DOI: 10.3390/app12199479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The increase in cancer cases is undoubtedly affecting the development of new therapeutic approaches. Polymeric nanoparticles are of great interest. Due to their relatively small size, the possibility of incorporating into them medicinal substances and the ease with which their physicochemical properties may be manipulated, they are being used as anticancer drug delivery systems. The aim of this review is to focus on the use of nanoscale polymeric particles in the treatment of colorectal cancer, breast cancer, ovarian cancer and glioblastoma multiforme, and to consider their potential use in cancer gene therapy. According to several reports, the use of polymer nanoparticles as drug carriers is promising in solid tumors. With their application, it is possible to precisely deliver medicinal substances to the tumor structure, to overcome the blood–brain barrier in the case of brain tumors, to reduce the side effects of anticancer agents on normal cells and to achieve a therapeutic effect with a lower drug dose. Additionally, a number of reports indicate that they can also be used in combination with other methods of cancer treatment, mainly radiotherapy.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Kurowska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
11
|
Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules 2022; 27:molecules27092981. [PMID: 35566331 PMCID: PMC9099628 DOI: 10.3390/molecules27092981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a usual digestive tract malignancy and the third main cause of cancer death around the world, with a high occurrence rate and mortality rate. Conventional therapies for CRC have certain side effects and restrictions. However, the exciting thing is that with the rapid development of nanotechnology, nanoparticles have gradually become more valuable drug delivery systems than traditional therapies because of their capacity to control drug release and target CRC. This also promotes the application of nano-drug targeted delivery systems in the therapy of CRC. Moreover, to make nanoparticles have a better colon targeting effect, many approaches have been used, including nanoparticles targeting CRC and in response to environmental signals. In this review, we focus on various targeting mechanisms of CRC-targeted nanoparticles and their latest research progress in the last three years, hoping to give researchers some inspiration on the design of CRC-targeted nanoparticles.
Collapse
|
12
|
Liu H, Yang J, Yan X, Li C, Elsabahy M, Chen L, Yang YW, Gao H. A dendritic polyamidoamine supramolecular system composed of pillar[5]arene and azobenzene for targeting drug-resistant colon cancer. J Mater Chem B 2021; 9:9594-9605. [PMID: 34783814 DOI: 10.1039/d1tb02134f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fusobacterium nucleatum caused drug-resistant around tumor sites often leads to the failure of chemotherapy during colorectal cancer (CRC) treatment. Multifunctional cationic quaternary ammonium materials have been widely used as broad-spectrum antibacterial agents in antibacterial and anticancer fields. Herein, we design a smart supramolecular quaternary ammonium nanoparticle, namely quaternary ammonium PAMAM-AZO@CP[5]A (Q-P-A@CP[5]A), consisting of azobenzene (AZO)-conjugated dendritic cationic quaternary ammonium polyamidoamine (PAMAM) as the core and carboxylatopillar[5]arene (CP[5]A)-based switch, for antibacterial and anti-CRC therapies. The quaternary ammonium-PAMAM-AZO (Q-P-A) core endows the supramolecular system with enhanced antibacterial and anticancer properties. -N+CH3 groups on the surface of Q-P-A are accommodated in the CP[5]A cavity under normal conditions, which significantly improves the biocompatibility of Q-P-A@CP[5]A. Meanwhile, the CP[5]A host can be detached from -N+CH3 groups under pathological conditions, achieving efficient antibacterial and antitumor therapies. Furthermore, azoreductase in the tumor site can break the -NN- bonds of AZO in Q-P-A@CP[5]A, leading to the morphology recovery of supramolecular nanoparticles and CRC therapy through inducing cell membrane rupture. Both in vitro and in vivo experiments demonstrate that Q-P-A@CP[5]A possesses good biocompatibility, excellent antibacterial effect, and CRC treatment capability with negligible side effects. This supramolecular quaternary ammonium system provides an effective treatment method to overcome chemotherapy-resistant cancer caused by bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China. .,Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jie Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiangjie Yan
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Chaoqi Li
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Mahmoud Elsabahy
- Science Academy, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China. .,Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|