1
|
Finite Element Modelling of a Gram-Negative Bacterial Cell and Nanospike Array for Cell Rupture Mechanism Study. Molecules 2023; 28:molecules28052184. [PMID: 36903429 PMCID: PMC10004153 DOI: 10.3390/molecules28052184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Inspired by nature, it is envisaged that a nanorough surface exhibits bactericidal properties by rupturing bacterial cells. In order to study the interaction mechanism between the cell membrane of a bacteria and a nanospike at the contact point, a finite element model was developed using the ABAQUS software package. The model, which saw a quarter of a gram-negative bacteria (Escherichia coli) cell membrane adhered to a 3 × 6 array of nanospikes, was validated by the published results, which show a reasonably good agreement with the model. The stress and strain development in the cell membrane was modeled and were observed to be spatially linear and temporally nonlinear. From the study, it was observed that the bacterial cell wall was deformed around the location of the nanospike tips as full contact was generated. Around the contact point, the principal stress reached above the critical stress leading to a creep deformation that is expected to cause cell rupture by penetrating the nanospike, and the mechanism is envisaged to be somewhat similar to that of a paper punching machine. The obtained results in this project can provide an insight on how bacterial cells of a specific species are deformed when they adhere to nanospikes, and how it is ruptured using this mechanism.
Collapse
|
2
|
Senevirathne SWAI, Mathew A, Toh YC, Yarlagadda PKDV. Bactericidal Efficacy of Nanostructured Surfaces Increases under Flow Conditions. ACS OMEGA 2022; 7:41711-41722. [PMID: 36406483 PMCID: PMC9670296 DOI: 10.1021/acsomega.2c05828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Bacterial colonization on solid surfaces creates enormous problems across various industries causing billions of dollars' worth of economic damages and costing human lives. Biomimicking nanostructured surfaces have demonstrated a promising future in mitigating bacterial colonization and related issues. The importance of this non-chemical method has been elevated due to bacterial evolvement into antibiotic and antiseptic-resistant strains. However, bacterial attachment and viability on nanostructured surfaces under fluid flow conditions has not been investigated thoroughly. In this study, attachment and viability of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) on a model nanostructured surface were studied under fluid flow conditions. A wide range of flow rates resulting in a broad spectrum of fluid wall shear stress on a nanostructured surface representing various application conditions were experimentally investigated. The bacterial suspension was pumped through a custom-designed microfluidic device (MFD) that contains a sterile Ti-6Al-4V substrate. The surface of the titanium substrate was modified using a hydrothermal synthesis process to fabricate the nanowire structure on the surface. The results of the current study show that the fluid flow significantly reduces bacterial adhesion onto nanostructured surfaces and significantly reduces the viability of adherent cells. Interestingly, the bactericidal efficacy of the nanostructured surface was increased under the flow by ∼1.5-fold against P. aeruginosa and ∼3-fold against S. aureus under static conditions. The bactericidal efficacy had no dependency on the fluid wall shear stress level. However, trends in the dead-cell count with the fluid wall shear were slightly different between the two species. These findings will be highly useful in developing and optimizing nanostructures in the laboratory as well as translating them into successful industrial applications. These findings may be used to develop antibacterial surfaces on biomedical equipment such as catheters and vascular stents or industrial applications such as ship hulls and pipelines where bacterial colonization is a great challenge.
Collapse
Affiliation(s)
- S. W.
M. A. Ishantha Senevirathne
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Asha Mathew
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Yi-Chin Toh
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Prasad K. D. V. Yarlagadda
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
| |
Collapse
|
3
|
Liu Z, Yi Y, Wang S, Dou H, Fan Y, Tian L, Zhao J, Ren L. Bio-Inspired Self-Adaptive Nanocomposite Array: From Non-antibiotic Antibacterial Actions to Cell Proliferation. ACS NANO 2022; 16:16549-16562. [PMID: 36218160 DOI: 10.1021/acsnano.2c05980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pathogenic bacterial infection and poor native tissue integration are two major issues encountered by biomaterial implants and devices, which are extremely hard to overcome within a single surface, especially for those without involvement of antibiotics. Herein, a self-adaptive surface that can transform from non-antibiotic antibacterial actions to promotion of cell proliferation is developed by in situ assembly of bacteriostatic 3,3'-diaminodipropylamine (DADP)-doped zeolitic imidazolate framework-8 (ZIF-8) on bio-inspired nanopillars. Initially, the nanocomposite surface shows impressive antibacterial effects, even under severe bacterial infection, due to the combination of mechano-bactericidal activity from a nanopillar structure and bacteriostatic activity contributed by pH-responsive release of DADP. After the complete degradation of the ZIF-8 layer, the refurbished nanopillars not only can still physically rupture bacterial membrane but also facilitate mammalian cell proliferation, due to the obvious difference in cell size. More strikingly, the nanocomposite surface totally avoids the usage of antibiotics, eradicating the potential risk of antimicrobial resistance, and the surface exhibited excellent histocompatibility and lower inflammatory response properties as revealed by in vivo tests. This type of self-adaptive surface may provide a promising alternative for addressing the intractable implant-associated requirements, where antibiotic-free antibacterial activity and native tissue integration are both highly needed.
Collapse
Affiliation(s)
- Ziting Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shujin Wang
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
4
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
5
|
Blovský T, Šindelka K, Limpouchová Z, Procházka K. Changes in Ion Concentrations upon the Binding of Short Polyelectrolytes on Phospholipid Bilayers: Computer Study Addressing Interesting Physiological Consequences. Polymers (Basel) 2022; 14:polym14173634. [PMID: 36080710 PMCID: PMC9459791 DOI: 10.3390/polym14173634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
This computer study was inspired by the experimental observation of Y. Qian et al. published in ACS Applied Materials and Interfaces, 2018 that the short positively charged β-peptide chains and their oligomeric analogues efficiently suppress severe medical problems caused by antimicrobial drug-resistant bacteria despite them not penetrating the bacterial membrane. Our coarse-grained molecular dynamics (dissipative particle dynamics) simulations confirm the tentative explanation of the authors of the experimental study that the potent antimicrobial activity is a result of the entropically driven release of divalent ions (mainly magnesium ions essential for the proper biological function of bacteria) into bulk solution upon the electrostatic binding of β-peptides to the bacterial membrane. The study shows that in solutions containing cations Na+, Ca2+ and Mg2+, and anions Cl−, the divalent cations preferentially concentrate close to the membrane and neutralize the negative charge. Upon the addition of positively charged oligomer chains (models of β-peptides and their analogues), the oligomers electrostatically bind to the membrane replacing divalent ions, which are released into bulk solvent. Our simulations indicate that the entropy of small ions (which controls the behavior of synthetic polyelectrolyte solutions) plays an important role in this and also in other similar biologically important systems.
Collapse
Affiliation(s)
- Tomáš Blovský
- The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135/1, Suchdol, 165 02 Prague 6, Czech Republic
| | - Zuzana Limpouchová
- The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Karel Procházka
- The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
- Correspondence:
| |
Collapse
|
6
|
Shen J, Guercio D, Heckler IL, Jiang T, Laughlin ST, Boon EM, Bhatia SR. Self-Patterned Nanoscale Topography of Thin Copolymer Films Prepared by Evaporative Assembly-Resist Early-Stage Bacterial Adhesion. ACS APPLIED BIO MATERIALS 2022; 5:3870-3882. [PMID: 35895111 DOI: 10.1021/acsabm.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation on the surfaces of indwelling medical devices has become a growing health threat due to the development of antimicrobial resistance to infection-causing bacteria. For example, ventilator-associated pneumonia caused by Pseudomonas and Staphylococci species has become a significant concern in treatment of patients during COVID-19 pandemic. Nanostructured surfaces with antifouling activity are of interest as a promising strategy to prevent bacterial adhesion without triggering drug resistance. In this study, we report a facile evaporative approach to prepare block copolymer film coatings with nanoscale topography that resist bacterial adhesion. The initial attachment of the target bacterium Pseudomonas aeruginosa PAO1 to copolymer films as well as homopolymer films was evaluated by fluorescence microscopy. Significant reduction in bacterial adhesion (93-99% less) and area coverage (>92% less) on the copolymer films was observed compared with that on the control and homopolymer films [poly(methacrylic acid) (PMAA)─only 40 and 23% less, respectively]. The surfaces of poly(styrene)-PMAA copolymer films with patterned nanoscale topography that contains sharp peaks ranging from 20 to 80 nm spaced at 30-50 nm were confirmed by atomic force microscopy and the corresponding surface morphology analysis. Investigation of the surface wettability and surface potential of polymer films assists in understanding the effect of surface properties on the bacterial attachment. Comparison of bacterial growth studies in polymer solutions with the growth studies on coatings highlights the importance of physical nanostructure in resisting bacterial adhesion, as opposed to chemical characteristics of the copolymers. Such self-patterned antifouling surface coatings, produced with a straightforward and energy-efficient approach, could provide a convenient and effective method to resist bacterial fouling on the surface of medical devices and reduce device-associated infections.
Collapse
Affiliation(s)
- Jiachun Shen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Danielle Guercio
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Ilana L Heckler
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Ting Jiang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
7
|
Senevirathne SWAI, Toh YC, Yarlagadda PKDV. Fluid Flow Induces Differential Detachment of Live and Dead Bacterial Cells from Nanostructured Surfaces. ACS OMEGA 2022; 7:23201-23212. [PMID: 35847259 PMCID: PMC9280952 DOI: 10.1021/acsomega.2c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanotopographic surfaces are proven to be successful in killing bacterial cells upon contact. This non-chemical bactericidal property has paved an alternative way of fighting bacterial colonization and associated problems, especially the issue of bacteria evolving resistance against antibiotic and antiseptic agents. Recent advancements in nanotopographic bactericidal surfaces have made them suitable for many applications in medical and industrial sectors. The bactericidal effect of nanotopographic surfaces is classically studied under static conditions, but the actual potential applications do have fluid flow in them. In this study, we have studied how fluid flow can affect the adherence of bacterial cells on nanotopographic surfaces. Gram-positive and Gram-negative bacterial species were tested under varying fluid flow rates for their retention and viability after flow exposure. The total number of adherent cells for both species was reduced in the presence of flow, but there was no flowrate dependency. There was a significant reduction in the number of live cells remaining on nanotopographic surfaces with an increasing flowrate for both species. Conversely, we observed a flowrate-independent increase in the number of adherent dead cells. Our results indicated that the presence of flow differentially affected the adherent live and dead bacterial cells on nanotopographic surfaces. This could be because dead bacterial cells were physically pierced by the nano-features, whereas live cells adhered via physiochemical interactions with the surface. Therefore, fluid shear was insufficient to overcome adhesion forces between the surface and dead cells. Furthermore, hydrodynamic forces due to the flow can cause more planktonic and detached live cells to collide with nano-features on the surface, causing more cells to lyse. These results show that nanotopographic surfaces do not have self-cleaning ability as opposed to natural bactericidal nanotopographic surfaces, and nanotopographic surfaces tend to perform better under flow conditions. These findings are highly useful for developing and optimizing nanotopographic surfaces for medical and industrial applications.
Collapse
Affiliation(s)
- S. W.
M. A. Ishantha Senevirathne
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| | - Yi-Chin Toh
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| | - Prasad K. D. V. Yarlagadda
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| |
Collapse
|
8
|
Sunil BR, Kranthi Kiran AS, Ramakrishna S. Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|