1
|
Mallik R, Saha M, Ghosh B, Chauhan N, Mohan H, Kumaran SS, Mukherjee C. Folate Receptor Targeting Mn(II) Complex Encapsulated Porous Silica Nanoparticle as an MRI Contrast Agent for Early-State Detection of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401787. [PMID: 38766969 DOI: 10.1002/smll.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Basab Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nisha Chauhan
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Liu X, Wang J, Wu Y, Wu M, Song J. Ultrasound activated probe for disease imaging and therapy In-Vivo. Adv Drug Deliv Rev 2024; 205:115158. [PMID: 38104895 DOI: 10.1016/j.addr.2023.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Sonodynamic therapy (SDT) is the use of ultrasound (US) to excite sonosensitizers to produce reactive oxygen species (ROS) to induce tumor cell death, thereby achieving therapeutic purposes. Based on the strong tissue penetration ability of ultrasound, SDT can realize the treatment of deeper tumors, and it is targeted, can be specifically concentrated at the tumor site, and has little impact on surrounding normal tissues. It has broad clinical transformation prospects. Therefore, sonosensitizers are the key to SDT, and the exploration of sonosensitizers with excellent therapeutic performance has received great attention. We reviewed the development of ultrasound-inspired sound sensitizers for imaging and treatment. First, different types of sonosensitizers are introduced, the construction and performance of inorganic, organic and hybrid types of sonosensitizers are evaluated, followed by a review of different image-guided SDT, and finally the key problems and solutions in this field are discussed in detail.
Collapse
Affiliation(s)
- Xing Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jimei Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Ying Wu
- College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China.
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China.
| |
Collapse
|
3
|
Keot N, Sarma M. Probing the dynamic behaviour and magnetic identification of seven coordinated Mn(II) complexes: a combined AIMD and multi-reference approach. Phys Chem Chem Phys 2023; 25:31165-31177. [PMID: 37953737 DOI: 10.1039/d3cp04072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We present an in-depth solution phase dynamics of rare seven coordinated pentagonal bipyramidal Mn(II) complexes, together with their binding affinity anticipated using ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT). Moreover, the simulations at different temperatures (25 °C and 90 °C) interpret the rigidity and stability of the ligands with Mn(II) ions. An intuitive approach for modulating the easy plane magnetic anisotropy of the mononuclear Mn(II) complex has been revealed by this work. In this regard, we have performed an extensive theoretical study based on the ab initio CASSCF/NEVPT2 method, exhibiting the presence of an easy plane magnetic anisotropy with a positive value of axial zero-field splitting (ZFS) parameter D. The complex's magnetic properties and electronic relaxation reveal that the rhombic ZFS term (E) can be modulated as the symmetry around the Mn(II) ion varies. The magnitude of the D-value increased with a more symmetrical equatorial ligand as found in the order of [Mn(pydpa)(H2O)] > [Mn(cbda)(H2O)]- > [Mn(dpaaa)(H2O)]- > [Mn(dpasam)(H2O)]-. Furthermore, we found that substituting the equatorial oxygen atom with heavier S and Se-donor atoms switches the sign of magnetic anisotropy for the Mn(II) complexes. The magnitude of the D-value increased when the energy levels of the ground state (GS) and the first excited state (ES) decreased. The observed magneto-structural correlation reveals that shortening the distance of the axial water molecule (Mn-O(w)) increases the D-value by an order of magnitude for the symmetrical [Mn(pydpa)(H2O)] complex. Overall, the combined analysis of solution phase dynamics of Mn(II) complexes and their magnetic characterization opens up new avenues in coordination chemistry, molecular magnetism, spin-crossover materials, and catalysis.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
5
|
Mallik R, Saha M, Singh V, Mohan H, Kumaran SS, Mukherjee C. Mn(II) complex impregnated porous silica nanoparticles as Zn(II)-responsive "Smart" MRI contrast agent for pancreas imaging. J Mater Chem B 2023; 11:8251-8261. [PMID: 37575086 DOI: 10.1039/d3tb01289a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Type-1 and type-2 diabetes mellitus are metabolic disorders governed by the functional efficiency of pancreatic β-cells. The activities of the cells toward insulin production, storage, and secretion are accompanied by Zn(II) ions. Thus, for non-invasive pathology of the cell, developing Zn(II) ion-responsive MRI-contrast agents has earned considerable interest. In this report, we have synthesized a seven-coordinate, mono(aquated) Mn(II) complex (1), which is impregnated within a porous silica nanosphere of size 13.2 nm to engender the Mn(II)-based MRI contrast agent, complex 1@SiO2NP. The surface functionalization of the nanosphere by the Py2Pic organic moiety for the selective binding of Zn(II)-ions yields complex 1@SiO2-Py2PicNP, which exhibits r1 = 13.19 mM-1 s-1. The relaxivity value elevates to 20.38 mM-1 s-1 in the presence of 0.6 mM BSA protein at pH 7.4. Gratifyingly, r1 increases linearly with the increase of Zn(II) ion concentration and reaches 39.01 mM-1 s-1 in the presence of a 40 fold excess of the ions. Thus, Zn(II)-responsive contrast enhancement in vivo is envisaged by employing the nanoparticle. Indeed, a contrast enhancement in the pancreas is observed when complex 1@SiO2-Py2PicNP and a glucose stimulus are administered in fasted healthy C57BL/6 mice at 7 T.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, 110029, New Delhi, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.
| |
Collapse
|
6
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|