1
|
Das JM, Upadhyay J, Monaghan MG, Borah R. Impact of the Reduction Time-Dependent Electrical Conductivity of Graphene Nanoplatelet-Coated Aligned Bombyx mori Silk Scaffolds on Electrically Stimulated Axonal Growth. ACS APPLIED BIO MATERIALS 2024; 7:2389-2401. [PMID: 38502100 PMCID: PMC11022174 DOI: 10.1021/acsabm.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Graphene-based nanomaterials, renowned for their outstanding electrical conductivity, have been extensively studied as electroconductive biomaterials (ECBs) for electrically stimulated tissue regeneration. However, using eco-friendly reducing agents like l-ascorbic acid (l-Aa) can result in lower conductive properties in these ECBs, limiting their full potential for smooth charge transfer in living tissues. Moreover, creating a flexible biomaterial scaffold using these materials that accurately mimics a specific tissue microarchitecture, such as nerves, poses additional challenges. To address these issues, this study developed a microfibrous scaffold of Bombyx mori (Bm) silk fibroin uniformly coated with graphene nanoplatelets (GNPs) through a vacuum coating method. The scaffold's electrical conductivity was optimized by varying the reduction period using l-Aa. The research systematically investigated how different reduction periods impact scaffold properties, focusing on electrical conductivity and its significance on electrically stimulated axonal growth in PC12 cells. Results showed that a 48 h reduction significantly increased surface electrical conductivity by 100-1000 times compared to a shorter or no reduction process. l-Aa contributed to stabilizing the reduced GNPs, demonstrated by a slow degradation profile and sustained conductivity even after 60 days in a proteolytic environment. β (III) tubulin immunostaining of PC12 cells on varied silk:GNP scaffolds under pulsed electrical stimulation (ES, 50 Hz frequency, 1 ms pulse width, and amplitudes of 100 and 300 mV/cm) demonstrates accelerated axonal growth on scaffolds exhibiting higher conductivity. This is supported by upregulated intracellular Ca2+ dynamics immediately after ES on the scaffolds with higher conductivity, subjected to a prolonged reduction period. The study showcases a sustainable reduction approach using l-Aa in combination with natural Bm silk fibroin to create a highly conductive, mechanically robust, and stable silk:GNP-based aligned fibrous scaffold. These scaffolds hold promise for functional regeneration in electrically excitable tissues such as nerves, cardiac tissue, and muscles.
Collapse
Affiliation(s)
- Jitu Mani Das
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department
of Physics, Dakshin Kamrup College, Kamrup, Mirza, Assam 781125, India
| | - Michael G. Monaghan
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
- CÚRAM,
Centre for Research in Medical Devices, National University of Ireland, Galway H91 W2TY, Ireland
| | - Rajiv Borah
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
| |
Collapse
|
2
|
Diedkova K, Pogrebnjak AD, Kyrylenko S, Smyrnova K, Buranich VV, Horodek P, Zukowski P, Koltunowicz TN, Galaszkiewicz P, Makashina K, Bondariev V, Sahul M, Čaplovičová M, Husak Y, Simka W, Korniienko V, Stolarczyk A, Blacha-Grzechnik A, Balitskyi V, Zahorodna V, Baginskiy I, Riekstina U, Gogotsi O, Gogotsi Y, Pogorielov M. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892008 DOI: 10.1021/acsami.2c22780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kateryna Diedkova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Alexander D Pogrebnjak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Department of Motor Vehicles, Lublin University of Technology, Nadbystrzycka 38 A, Lublin 20-618, Poland
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Sergiy Kyrylenko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
| | - Kateryna Smyrnova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | | | - Pawel Horodek
- Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Street, Krakow 31-342, Poland
| | - Pawel Zukowski
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Tomasz N Koltunowicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Piotr Galaszkiewicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Kristina Makashina
- East-Kazakhstan State Technical University, D. Serikbayev Street, 19, Ust-Kamenogorsk 070000, Kazakhstan
| | - Vitaly Bondariev
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Martin Sahul
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | - Maria Čaplovičová
- Centre for Nanodiagnostics of Materials, Slovak University of Technology in Bratislava, 5 Vazovova Street, Bratislava 812 43, Slovakia
| | - Yevheniia Husak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Viktoriia Korniienko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Agnieszka Stolarczyk
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Vitalii Balitskyi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Ivan Baginskiy
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Una Riekstina
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Oleksiy Gogotsi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Yury Gogotsi
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| |
Collapse
|
3
|
Li H, Dai J, Yi X, Cheng F. Generation of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. BIOMATERIALS ADVANCES 2022; 140:213055. [PMID: 35941053 DOI: 10.1016/j.bioadv.2022.213055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Herein, we designed and fabricated a MXene@polydopamine (MXene@PDA)-decorated chitosan non-woven fabric (M-CNF) hemostatic dressing with super hydrophilic properties for wound repair and regeneration. The M-CNF exhibit excellently wettability characteristics which can rapidly absorb water from blood. Moreover, M-CNF with 15 mg/mL MXene@PDA (M-CNF-15) show better antibacterial performance, excellent blood-clotting performance, better blood cell and platelet adhesion ability than CNF, displaying both active and passive hemostatic mechanisms to accelerate blood clotting in mouse-liver injury model. In addition, the M-CNF-15 also shows better wound healed performance than Tegaderm™ film in a full-thickness skin defect model, and further demonstrating that the MXene@PDA can promote fibrinogen reformation the at the initial phases of the wound healing process. Therefore, this strategy for designing and manufacturing of multi-functional M-CNF wound dressing will have great potential for active local hemostasis and wound repair and regeneration.
Collapse
Affiliation(s)
- Hongbin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Jiliang Dai
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Xiaotong Yi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|