1
|
Ju F, Hua L, Xu J, Li T, Wei T, Lv A, Yang H. Probing the aggregation behavior of collagen molecules regulated by dibenzaldehyde-terminated-PEG with varying molecular weights in solution. Int J Biol Macromol 2024; 282:136920. [PMID: 39481711 DOI: 10.1016/j.ijbiomac.2024.136920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Rigid and fragile nature of collagen-based materials cross-linked with biocompatible aldehyde-functionalized polysaccharides remains a challenge. Drawing inspiration from the pangolins' protective barrier, we introduce a novel cross-linker with a flexible chain to impart a "rigid-flexible coupled structure" to the collagen-based matrix. Successful integration of dibenzaldehyde-terminated-PEG (DF-PEG) into collagen molecules was confirmed by XRD and FTIR analyses. CD measurements demonstrated that the intact triple-helical structure was preserved in all samples. Distinct effects of DF-PEG with varying molecular weights on the aggregation behavior of collagen molecules were evaluated using multiple quantitative analysis techniques. Specifically, when the molecular weight of DF-PEG was below 20,000, multipoint hydrogen bonds and Schiff-base linkages were produced as the molecular weight of DF-PEG increased, which synergistically enhanced the aggregation behavior of collagen molecules. While the aggregation behavior of collagen molecules was slightly diminished upon the molecular weight of DF-PEG reached 20,000. This reduction can be attributed to the limited accessibility of the molecular reactive sites in the extended DF-PEG chains. Finally, a computational test of the binding interactions between collagen molecules and DF-PEG was conducted to validate the experimental results. Our biomimetic design strategy offers a new approach for the preparation of collagen-based materials with exceptional physicochemical properties.
Collapse
Affiliation(s)
- Fengxian Ju
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Lingyu Hua
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Tao Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Aijie Lv
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Huan Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
2
|
Oz Y, Roy A, Jain S, Zheng Y, Mahmood E, Baidya A, Annabi N. Designing a Naturally Inspired Conductive Copolymer to Engineer Wearable Bioadhesives for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36002-36016. [PMID: 38954606 DOI: 10.1021/acsami.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of adhesive and conductive soft hydrogels using biopolymers with tunable mechanical properties has received significant interest in the field of wearable sensors for detecting human motions. These hydrogels are primarily fabricated through the modification of biopolymers to introduce cross-linking sites, the conjugation of adhesive components, and the incorporation of conductive materials into the hydrogel network. The development of a multifunctional copolymer that integrates adhesive and conductive properties within a single polymer chain with suitable cross-linking sites eliminates the need for biopolymer modification and the addition of extra conductive and adhesive components. In this study, we synthesized a copolymer based on poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride-co-dopamine methacrylamide) (p(METAC-DMA)) using a controlled radical polymerization, allowing for the efficient conjugation of both adhesive and conductive units within a single polymer chain. Subsequently, our multifunctional hydrogel named Gel-MD was fabricated by mixing the p(METAC-DMA) copolymer with non-modified gelatin in which cross-linking took place in an oxidative environment. We confirmed the biocompatibility of the Gel-MD hydrogel through in vitro studies using NIH 3T3 cells as well as in vivo subcutaneous implantation in rats. Furthermore, the Gel-MD hydrogel was effective and sensitive in detecting various human motions, making it a promising wearable sensor for health monitoring and diagnosis.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Edrees Mahmood
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
4
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
5
|
Gu S, Liu M, Xu R, Han X, Lou Y, Kong Y, Gao Y, Shang S, Song Z, Song J, Li J. Ecofriendly Controlled-Release Insecticide Carrier: pH-/Temperature-Responsive Rosin-Derived Hydrogels for Avermectin Delivery against Mythimna separata (Walker). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10992-11010. [PMID: 38743441 DOI: 10.1021/acs.langmuir.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.
Collapse
Affiliation(s)
- Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mei Liu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
6
|
Omidian H, Wilson RL, Gill EJ. Advancements and Challenges in Self-Healing Hydrogels for Wound Care. Gels 2024; 10:241. [PMID: 38667660 PMCID: PMC11048759 DOI: 10.3390/gels10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript explores self-healing hydrogels as innovative solutions for diverse wound management challenges. Addressing antibiotic resistance and tailored wound care, these hydrogels exhibit promising outcomes, including accelerated wound closure and tissue regeneration. Advancements in multifunctional hydrogels with controlled drug release, antimicrobial properties, and real-time wound assessment capabilities signal a significant leap toward patient-centered treatments. However, challenges such as scalability, long-term safety evaluation, and variability in clinical outcomes persist. Future directions emphasize personalized medicine, manufacturing innovation, rigorous evaluation through clinical trials, and interdisciplinary collaboration. This manuscript features the ongoing pursuit of effective, adaptable, and comprehensive wound care solutions to transform medical treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (E.J.G.)
| | | | | |
Collapse
|
7
|
Wu ZQ, Cao XQ, Hua Y, Yu CM. A Bifunctional Wearable Sensor Based on a Nanoporous Membrane for Simultaneous Detection of Sweat Lactate and Temperature. Anal Chem 2024. [PMID: 38320230 DOI: 10.1021/acs.analchem.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wearable sensors for non-invasive, real-time detection of sweat lactate have far-reaching implications in the fields of health care and exercise physiological responses. Here, we propose a wearable electrochemical sensor with gold nanoelectrode arrays fabricated on the nanoporous polycarbonate (PC) membrane by encapsulating lactate oxidase (LOx) in chitosan (CS) hydrogel for detecting body temperature and sweat lactate concurrently. Flexible gold nanoporous electrodes not only enhance electrode area but also offer a nanoconfined space to accelerate the catalytic reaction of LOx and control substrate concentration on the surface of LOx to decrease substrate inhibition. The proposed sensor has a long durability of 13 days and better selectivity for the detection of sweat lactate over a wide linear range (0.01-35 mM) with a low detection limit (0.144 μM). Furthermore, temperature-dependent transmembrane currents passing through the sensor are used to estimate body temperature. We then use multiple linear regression to adjust the effect of temperature on lactate detection and succeed in monitoring lactate molecules in sweat and body temperature during exercise.
Collapse
Affiliation(s)
- Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Qing Cao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
8
|
Wang Y, Wang Z, Lu W, Hu Y. Review on chitosan-based antibacterial hydrogels: Preparation, mechanisms, and applications. Int J Biol Macromol 2024; 255:128080. [PMID: 37977472 DOI: 10.1016/j.ijbiomac.2023.128080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Chitosan (CS) is known for its remarkable properties, such as good biocompatibility, biodegradability, and renewability, in addition to its antibacterial and biological activities. However, as CS is insoluble in water, it displays limited antibacterial performance under neutral and physiological conditions. A viable solution to this problem is grafting chemically modified groups onto the CS framework, thereby increasing its solubility and enhancing its antibacterial effect. Herein, the antibacterial action mechanism of CS and its derivatives is reviewed, confirming the prevalent use of composite materials comprising CS and its derivatives as an antibacterial agent. Generally, the antimicrobial ability of CS-based biomaterials can be enhanced by incorporating supplementary polymers and antimicrobial agents. Research on CS-based composite biomaterials is ongoing and numerous types of biomaterials have been reported, including inorganic nanoparticles, antibacterial agents, and CS derivatives. The development of these composite materials has considerably expanded the application of CS-based antibacterial materials. This study reviews the latest progress in research regarding CS-based composite hydrogels for wound repair, tissue engineering, drug release, water purification, and three-dimensional printing applications. Finally, the summary and future outlook of CS-based antibacterial hydrogels are presented in anticipation of a broader range of applications of CS-based antibacterial hydrogels.
Collapse
Affiliation(s)
- Yixi Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenya Lu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Yu Hu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| |
Collapse
|
9
|
Oliveira MX, Canafístula FVC, Ferreira CRN, Fernandes LVO, de Araújo AR, Ribeiro FOS, Souza JMT, Lima IC, Assreuy AMS, Silva DA, Filho JDBM, Araújo AJ, Maciel JS, Feitosa JPA. Hydrogels dressings based on guar gum and chitosan: Inherent action against resistant bacteria and fast wound closure. Int J Biol Macromol 2023; 253:127281. [PMID: 37806422 DOI: 10.1016/j.ijbiomac.2023.127281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Hydrogels made with depolymerized guar gum, oxidized with theoretical oxidation degrees of 20, 35 and 50 %, were obtained via Schiff's base reaction with N-succinyl chitosan. The materials obtained were subjected to characterization by FT-IR, rheology, swelling, degradation, and morphology. Additionally, their gelation time categorized all three hydrogels as injectable. The materials' swelling degrees in Phosphate-Buffered Saline (PBS) were in the range of 26-35 g of fluid/g gel and their pore size distribution was heterogeneous, with pores varying from 67 to 93 μm. All hydrogels degraded in PBS solution, but maintained around 40 % of their initial mass after 28 days, which was more than enough time for wound healing. The biomaterials were also flexible, self-repairing, adhesive and cytocompatible and presented intrinsic actions, regardless of the presence of additives or antibiotics, against gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli). However, the most pronounced bactericidal effect was against resistant Staphylococcus aureus - MRSA. In vivo assays, performed with 50 % oxidized gum gel, demonstrated that this material exerted anti-inflammatory effects, accelerating the healing process and restoring tissues by approximately 99 % within 14 days. In conclusion, these hydrogels have unique characteristics, making them excellent candidates for wound-healing dressings.
Collapse
Affiliation(s)
- Matheus X Oliveira
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | - Carlos Rhamon N Ferreira
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Ludmila Virna O Fernandes
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Alyne R de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Fábio Oliveira S Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jessica Maria T Souza
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Iásly C Lima
- Superior Institute of Biomedical Sciences, State University of Ceará, UECE, Fortaleza, CE, Brazil
| | - Ana Maria S Assreuy
- Superior Institute of Biomedical Sciences, State University of Ceará, UECE, Fortaleza, CE, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - José Delano Barreto M Filho
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Ana Jérsia Araújo
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jeanny S Maciel
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Judith Pessoa A Feitosa
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|