1
|
Liu T, Liu J, Zhu Q, Mu W, Chen L, Weng L, Kong G, Chen X. NIR responsive scaffold with multistep shape memory and photothermal-chemodynamic properties for complex tissue defects repair and antibacterial therapy. Biomaterials 2025; 313:122794. [PMID: 39241552 DOI: 10.1016/j.biomaterials.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Complex tissue damage accompanying with bacterial infection challenges healthcare systems globally. Conventional tissue engineering scaffolds normally generate secondary implantation trauma, mismatched regeneration and infection risks. Herein, we developed an easily implanted scaffold with multistep shape memory and photothermal-chemodynamic properties to exactly match repair requirements of each part from the tissue defect by adjusting its morphology as needed meanwhile inhibiting bacterial infection on demand. Specifically, a thermal-induced shape memory scaffold was prepared using hydroxyethyl methacrylate and polyethylene glycol diacrylate, which was further combined with the photothermal agent iron tannate (FeTA) to produce NIR light-induced shape memory property. By varying ingredients ratios in each segment, this scaffold could perform a stepwise recovery under different NIR periods. This process facilitated implantation after shape fixing to avoid trauma caused by conventional methods and gradually filled irregular defects under NIR to perform suitable tissue regeneration. Moreover, FeTA also catalyzed Fenton reaction at bacterial infections with abundant H2O2, which produced excess ROS for chemodynamic antibacterial therapy. As expected, bacteriostatic rate was further enhanced by additional photothermal therapy under NIR. The in vitro and vivo results showed that our scaffold was able to perform high efficacy in both antibiosis, inflammation reduction and wound healing acceleration, indicating a promising candidate for the regeneration of complex tissue damage with bacterial infection.
Collapse
Affiliation(s)
- Tao Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Jie Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Qixuan Zhu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wenyun Mu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Li Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Xin Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China; School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
2
|
Yuan F, Guan Q, Dou X, Yang H, Hong Y, Xue Y, Cao Z, Li H, Xu Z, Qin Y. High-yield synthesis of hydroxylated boron nitride nanosheets and their utilization in thermally conductive polymeric nanocomposites. RSC Adv 2024; 14:21230-21240. [PMID: 38974223 PMCID: PMC11224952 DOI: 10.1039/d4ra02329c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Hexagonal boron nitride nanosheets (BNNSs) possess remarkable potential for various applications due to their unprecedented properties. However, the scalable production of BNNSs with both expansive surface and high solubility continues to present a significant challenge. Herein, we propose an innovative and efficient two-step method for manufacturing hydroxyl-functionalized BNNSs (OH-BNNSs). Initially, hydroxyl groups are covalently attached to bulk hexagonal boron nitride (h-BN) surfaces through H2O2 treatment. Then, the hydroxyl-functionalized h-BN undergoes exfoliation on account of a sudden increase in interlayer gas pressure generated by the vigorous decomposition of H2O2 in alkali solutions, resulting in the creation of OH-BNNSs. This approach produces relatively large flakes with an average dimension of 1.65 μm and a high yield of 45.2%. The resultant OH-BNNSs exhibit remarkable stability and dispersibility in a range of solvents. Their integration into thermoplastic polyurethane (TPU) significantly enhances both thermal conductivity and stability, attributed to the excellent compatibility with the resin matrix. This study represents a significant advancement in the functionalization and exfoliation of h-BN, opening new avenues for its promising applications in polymer composites.
Collapse
Affiliation(s)
- Feng Yuan
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Qinhan Guan
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Xuehan Dou
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Han Yang
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Yiming Hong
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Yawen Xue
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Zhenxing Cao
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Northeast Petroleum University Daqing 163318 China
| | - Zexiao Xu
- Suzhou Jiren High-Tech Materials Co., Ltd Suzhou China
| | - Yuyang Qin
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
- School of Chemistry and Chemical Engineering, Northeast Petroleum University Daqing 163318 China
- Suzhou Jiren High-Tech Materials Co., Ltd Suzhou China
| |
Collapse
|
3
|
Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA. Silver and Antimicrobial Polymer Nanocomplexes to Enhance Biocidal Effects. Int J Mol Sci 2024; 25:1256. [PMID: 38279254 PMCID: PMC10815966 DOI: 10.3390/ijms25021256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Antimicrobial resistance has become a major problem over the years and threatens to remain in the future, at least until a solution is found. Silver nanoparticles (Ag-NPs) and antimicrobial polymers (APs) are known for their antimicrobial properties and can be considered an alternative approach to fighting resistant microorganisms. Hence, the main goal of this research is to shed some light on the antimicrobial properties of Ag-NPs and APs (chitosan (CH), poly-L-lysine (PLL), ε-poly-L-lysine (ε-PLL), and dopamine (DA)) when used alone and complexed to explore the potential enhancement of the antimicrobial effect of the combination Ag-NPs + Aps. The resultant nanocomplexes were chemically and morphologically characterized by UV-visible spectra, zeta potential, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Moreover, the Ag-NPs, APs, and Ag-NPs + APs nanocomplexes were tested against Gram-positive Staphylococcus aureus (S. aureus) and the Gram-negative Escherichia coli (E. coli) bacteria, as well as the fungi Candida albicans (C. albicans). Overall, the antimicrobial results showed potentiation of the activity of the nanocomplexes with a focus on C. albicans. For the biofilm eradication ability, Ag-NPs and Ag-NPs + DA were able to significantly remove S. aureus preformed biofilm, and Ag-NPs + CH were able to significantly destroy C. albicans biofilm, with both performing better than Ag-NPs alone. Overall, we have proven the successful conjugation of Ag-NPs and APs, with some of these formulations showing potential to be further investigated for the treatment of microbial infections.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (S.F.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (S.F.)
| | - Gloria Belén Ramírez-Rodríguez
- Department of Inorganic Chemistry (BioNanoMetals Group), Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva, s/n, 18071 Granada, Spain;
| | - Nuno Alves
- CDRSP-PL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (S.F.)
| | - Joana F. A. Valente
- CDRSP-PL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|