1
|
Chen H, Fu S, Chen X, Chen R, Tan H. Adenosine Triphosphate-Activated Cascade Reactor for On-Demand Antibacterial Treatment Through Controlled Hydroxyl Radical Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309403. [PMID: 38148307 DOI: 10.1002/smll.202309403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Nanozymes have shown promise for antibacterial applications, but their effectiveness is often hindered by low catalytic performances in physiological conditions and uncontrolled production of hydroxyl radicals (·OH). To address these limitations, a comprehensive approach is presented through the development of an adenosine triphosphate (ATP)-activated cascade reactor (GGPcs). The GGPcs reactor synergistically combines the distinct properties of zeolitic imidazolate framework-8 (ZIF-8) and chitosan-integrated hydrogel microsphere. The ZIF-8 allows for the encapsulation of G-quadruplex/hemin DNAzyme to achieve ATP-responsive ·OH generation at neutral pH, while the hydrogel microsphere creates a confinement environment that facilitates glucose oxidation and provides a sufficient supply of H2O2. Importantly, the integrated chitosan in the hydrogel microsphere shields ZIF-8 from undesired disruption caused by gluconic acid, ensuring the responsive specificity of ZIF-8 toward ATP. By activating GGPcs with ATP secreted by bacteria, its effectiveness as an antibacterial agent is demonstrated for the on-demand treatment of bacterial infection with minimal side effects. This comprehensive approach has the potential to facilitate the design of advanced nanozyme systems and broaden their biological applications.
Collapse
Affiliation(s)
- Huihong Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Shanshan Fu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Xiaoqian Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Ruyi Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hongliang Tan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
2
|
Liu Q, Liu Y, Wan Q, Lu Q, Liu J, Ren Y, Tang J, Su Q, Luo Y. Label-Free, Reusable, Equipment-Free, and Visual Detection of Hydrogen Sulfide Using a Colorimetric and Fluorescent Dual-Mode Sensing Platform. Anal Chem 2023; 95:5920-5926. [PMID: 36989391 DOI: 10.1021/acs.analchem.2c05364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In this work, we have found for the first time that the fluorescence of rhodamine B (RhB) would be dramatically reduced after it bound to hemin/G-quadruplex and reacted with •OH. Based on this finding, we have designed a colorimetric and fluorescent dual-mode sensing platform for visual detection of hydrogen sulfide (H2S). The constructed sensor is based on the formation of dsDNA and the G-quadruplex structure by the cytosine-Ag+-cytosine mismatch, causing H2O2-mediated catalysis to oxidize ABTS or RhB to induce a colorimetric or fluorescent change. In the presence of H2S, the solution color for colorimetric and fluorescent assays would change from dark green to pink and from green (fluorescence off) to bright yellow (fluorescence on), respectively. This dual-mode assay showed high selectivity toward H2S over other interference materials with a low measurable detection limit value (below than 2.5 μM), and it has been successfully applied to H2S visual detection in real samples. Moreover, the dual-mode sensing strategy presented an excellent reutilization character both in colorimetric and fluorescent assays. This method was employed as a label-free, simple, fast, and equipment-free platform for H2S detection with high selectivity and reusability. This work realized naked-eye detection both in colorimetric and fluorescent analysis at a lower concentration of H2S, demonstrating a promising strategy for on-site visual detection of H2S.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yue Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qing Wan
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qinrui Lu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jun Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yonggang Ren
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jiancai Tang
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qiang Su
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, Sichuan 637000, P. R. China
| | - Yingping Luo
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| |
Collapse
|
3
|
Huang L, Yu L, Yin X, Lin Y, Xu Y, Niu Y. Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. J Colloid Interface Sci 2022; 622:117-125. [DOI: 10.1016/j.jcis.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022]
|
4
|
Cheng Y, Cheng M, Hao J, Jia G, Monchaud D, Li C. The noncovalent dimerization of a G-quadruplex/hemin DNAzyme improves its biocatalytic properties. Chem Sci 2020; 11:8846-8853. [PMID: 34123138 PMCID: PMC8163442 DOI: 10.1039/d0sc02907f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
While many protein enzymes exert their functions through multimerization, which improves both selectivity and activity, this has not yet been demonstrated for other naturally occurring catalysts. Here, we report a multimerization effect applied to catalytic DNAs (or DNAzymes) and demonstrate that the enzymatic efficiency of G-quadruplexes (GQs) in interaction with the hemin cofactor is remarkably enhanced by homodimerization. The resulting non-covalent dimeric GQ-DNAzyme system provides hemin with a structurally defined active site in which both the cofactor (hemin) and the oxidant (H2O2) are activated. This new biocatalytic system efficiently performs peroxidase- and peroxygenase-type biotransformations of a broad range of substrates, thus providing new perspectives for biotechnological application of GQs.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - David Monchaud
- Institut de Chimie Moléculaire de l' Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon 21078 Dijon France
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
5
|
Wang J, Cheng M, Chen J, Ju H, Monchaud D, Mergny JL, Zhou J. An oxidatively damaged G-quadruplex/hemin DNAzyme. Chem Commun (Camb) 2020; 56:1839-1842. [PMID: 31950946 DOI: 10.1039/c9cc09237d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative damage of guanine to 8-oxoguanine triggers a partial and variable loss of G-quadruplex/hemin DNAzyme activity and provides clues to the mechanistic origins of DNAzyme deactivation, which originates from an interplay between decreased G-quadruplex stability, lower hemin affinity and a modification of the nature of hemin binding sites.
Collapse
Affiliation(s)
- Jiawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - David Monchaud
- Institut de Chimie Moléculaire, Université de Bourgogne (ICMUB), CNRS UMR6302, UBFC Dijon 21000, France
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. J Colloid Interface Sci 2020; 559:313-323. [DOI: 10.1016/j.jcis.2019.09.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/30/2023]
|
7
|
Ma L, Liu J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020; 23:100815. [PMID: 31954323 PMCID: PMC6962706 DOI: 10.1016/j.isci.2019.100815] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Since the initial discovery of ribozymes in the early 1980s, catalytic nucleic acids have been used in different areas. Compared with protein enzymes, catalytic nucleic acids are programmable in structure, easy to modify, and more stable especially for DNA. We take a historic view to summarize a few main interdisciplinary areas of research on nucleic acid enzymes that may have broader impacts. Early efforts on ribozymes in the 1980s have broken the notion that all enzymes are proteins, supplying new evidence for the RNA world hypothesis. In 1994, the first catalytic DNA (DNAzyme) was reported. Since 2000, the biosensor applications of DNAzymes have emerged and DNAzymes are particularly useful for detecting metal ions, a challenging task for enzymes and antibodies. Combined with nanotechnology, DNAzymes are key building elements for switches allowing dynamic control of materials assembly. The search for new DNAzymes and ribozymes is facilitated by developments in DNA sequencing and computational algorithms, further broadening our fundamental understanding of their biochemistry.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
8
|
Zhou S, Ji H, Liu L, Feng S, Fu Y, Yang Y, Lü C. Mussel-inspired coordination functional polymer brushes-decorated rGO-stabilized silver nanoparticles composite for antibacterial application. Polym Chem 2020. [DOI: 10.1039/d0py00180e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A catechol-terminated coordination functional polymer-modified rGO supported AgNPs composite was fabricated. Grafted polymer brushes improve the material's hydrophilicity and dispersion stability of AgNPs on rGO, enhancing antibacterial activity.
Collapse
Affiliation(s)
- Shengnan Zhou
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
- Institute of Chemistry
| | - Haixun Ji
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Linjing Liu
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Sijia Feng
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Yuqin Fu
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Yu Yang
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|