1
|
Uten S, Boonbanjong P, Prueksathaporn Y, Treerattrakoon K, Sathirapongsasuti N, Chanlek N, Pinitsoontorn S, Luksirikul P, Japrung D. Magnetic Graphene Oxide Nanocomposites for Selective miRNA Separation and Recovery. ACS OMEGA 2024; 9:2263-2271. [PMID: 38250391 PMCID: PMC10795033 DOI: 10.1021/acsomega.3c05919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
In this study, we developed magnetic graphene oxide composites by chemically attaching Fe3O4 nanoparticles to graphene oxide nanosheets. Characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM), confirmed the successful synthesis of Fe3O4@GO composites with desirable properties. The resulting composites exhibited superparamagnetic behavior, solubility, and compatibility for efficient miRNA separation. Using miR-29a as a model, we demonstrated the effective binding of miR-29a to the magnetic graphene oxide (GO) composites at an optimal concentration of 1.5 mg/mL, followed by a simple separation using magnetic forces. Additionally, the addition of 5.0 M urea enhanced the miRNA recovery. These findings highlight the potential use of our magnetic graphene oxide composites for the efficient separation and recovery of miR-29a, suggesting their broad applicability in various miRNA-based studies. Further exploration can focus on investigating endogenous miRNAs with aberrant expression patterns, contributing to the advancements in precision medicine.
Collapse
Affiliation(s)
- Supapitch Uten
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Poramin Boonbanjong
- Program
in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Yosaphon Prueksathaporn
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Kiatnida Treerattrakoon
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, United Kingdom
| | - Nuankanya Sathirapongsasuti
- Program
in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization), 111 University Avenue, Muang, Nakhon Ratchasrima 30000, Thailand
| | - Supree Pinitsoontorn
- Institute
of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patraporn Luksirikul
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Research
Network NANOTEC-KU on Nanocatalysts and Nanomaterials for Sustainable
Energy and Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| |
Collapse
|
2
|
Pan QX, Yang YC, Zhao NN, Zhang B, Cui L, Zhang CY. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers. Anal Chim Acta 2023; 1272:341480. [PMID: 37355327 DOI: 10.1016/j.aca.2023.341480] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
Chirality is an important property of nature and it regulates fundamental phenomena in nature and organisms. Here, we develop a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods (L-CuCys NRs) to discriminate tryptophan (Trp) isomers. The chiral L-CuCys NRs are prepared in alkaline solution based on the facile coordination reaction between the sulfhydryl groups of L-Cys and copper ions. Since the stability constant (K) of L-CuCys NRs with L-Trp (752) are much higher than that of L-CuCys NRs with D-Trp (242), the cross-linking bonds between L-CuCys NRs and L-Trp are more stable than those between L-CuCys NRs and D-Trp. Consequently, this electrochemical sensor can selectively recognize the Trp isomers with an enantiomeric electrochemical difference ratio (IL-Trp/ID-Trp) of 3.22, and it exhibits a detection limit of 0.26 μM for L-Trp. Moreover, this electrochemical sensor can quantitatively measure Trp isomers in complex samples. Importantly, this electrochemical sensor has the characteristics of high stability, good repeatability, easy fabrication, low cost, and efficient discrimination of tryptophan (Trp) isomers.
Collapse
Affiliation(s)
- Qian-Xiu Pan
- College of Pharmacy, Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - Yun-Cong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Baogang Zhang
- College of Pharmacy, Department of Pathology, Weifang Medical University, Weifang, 261053, China.
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
3
|
Susanti, Riswoko A, Laksmono JA, Widiyarti G, Hermawan D. Surface modified nanoparticles and their applications for enantioselective detection, analysis, and separation of various chiral compounds. RSC Adv 2023; 13:18070-18089. [PMID: 37323439 PMCID: PMC10267673 DOI: 10.1039/d3ra02399k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The development of efficient enantioselective detection, analysis, and separation relies significantly on molecular interaction. In the scale of molecular interaction, nanomaterials have a significant influence on the performance of enantioselective recognitions. The use of nanomaterials for enantioselective recognition involved synthesizing new materials and immobilization techniques to produce various surface-modified nanoparticles that are either encapsulated or attached to surfaces, as well as layers and coatings. The combination of surface-modified nanomaterials and chiral selectors can improve enantioselective recognition. This review aims to offer engagement insights into the production and application of surface-modified nanomaterials to achieve sensitive and selective detection, better chiral analysis, and separation of numerous chiral compounds.
Collapse
Affiliation(s)
- Susanti
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Asep Riswoko
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Joddy Arya Laksmono
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Galuh Widiyarti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine - National Research and Innovation Agency (BRIN) KST BJ Habibie, Kawasan Puspiptek Building 452 Tangerang Selatan 15314 Indonesia
| | - Dadan Hermawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University (UNSOED) Indonesia
| |
Collapse
|
4
|
Yu HR, Lei L, Wang YL, Wang X, Liang T, Cheng CJ. A chiral magnetic molybdenum disulfide nanocomposite for direct enantioseparation of RS-propranolol. RSC Adv 2023; 13:5249-5258. [PMID: 36777935 PMCID: PMC9910328 DOI: 10.1039/d2ra04866c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
We herein report a novel chiral magnetic molybdenum disulfide nanocomposite (MMoS2/PNG-CD) with a high enantioselectivity and excellent thermosensitivity and magnetism. The prepared MMoS2/PNG-CD shows temperature-dependent chiral discrimination and enantioselectivity toward a chiral drug RS-propranolol (RS-PPL), which is based on the molecular recognition ability of beta-cyclodextrin (β-CD) and the thermosensitivity of poly(N-isopropylacrylamide) (PNIPAM). The synthesized MMoS2/PNG2-CD by using a monomer molar ratio of GMA to NIPAM of 2 : 1 demonstrates a high selectivity toward R-PPL over S-PPL due to the synergistic effect of the PNIPAM moieties and β-CD hosts. The thermo-induced volume phase transition (VPT) of the introduced PNIPAM moieties significantly affects the inclusion constants of the β-CD/R-PPL complex, and thus the loading and desorption of R-PPL on the MMoS2/PNG2-CD. The enantioselectivity at temperatures below the lower critical solution temperature (LCST) of the PNG-β-CD grafting chains is much higher than that at temperatures above the LCST. As a result, the regeneration of the MMoS2/PNG2-CD is easily achieved via simply changing the operating temperature. Moreover, the regenerated MMoS2/PNG2-CD can be readily recovered from the RS-PPL solution under an external magnetic field for reuse. Such a multifunctional molybdenum disulfide nanocomposite with a high enantioselectivity and excellent thermosensitivity and regenerability is promising to serve as a high-performance nanoselector for direct resolution of various β-blocker drugs.
Collapse
Affiliation(s)
- Hai-Rong Yu
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China .,Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China
| | - Li Lei
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China
| | - Yan-Lin Wang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China
| | - Xi Wang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China
| | - Ting Liang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China .,Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China
| | - Chang-Jing Cheng
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China .,Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610041 China
| |
Collapse
|
5
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
6
|
Hobbs C, Řezanka P, Řezanka M. Cyclodextrin‐Functionalised Nanomaterials for Enantiomeric Recognition. Chempluschem 2020; 85:876-888. [DOI: 10.1002/cplu.202000187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Hobbs
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Pavel Řezanka
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Michal Řezanka
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| |
Collapse
|
7
|
Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019; 24:E1007. [PMID: 30871182 PMCID: PMC6470864 DOI: 10.3390/molecules24061007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Chiral molecules are stereoselective with regard to specific biological functions. Enantiomers differ considerably in their physiological reactions with the human body. Safeguarding the quality and safety of drugs requires an efficient analytical platform by which to selectively probe chiral compounds to ensure the extraction of single enantiomers. Asymmetric synthesis is a mature approach to the production of single enantiomers; however, it is poorly suited to mass production and allows for only specific enantioselective reactions. Furthermore, it is too expensive and time-consuming for the evaluation of therapeutic drugs in the early stages of development. These limitations have prompted the development of surface-modified nanoparticles using amino acids, chiral organic ligands, or functional groups as chiral selectors applicable to a racemic mixture of chiral molecules. The fact that these combinations can be optimized in terms of sensitivity, specificity, and enantioselectivity makes them ideal for enantiomeric recognition and separation. In chiral resolution, molecules bond selectively to particle surfaces according to homochiral interactions, whereupon an enantiopure compound is extracted from the solution through a simple filtration process. In this review article, we discuss the fabrication of chiral nanoparticles and look at the ways their distinctive surface properties have been adopted in enantiomeric recognition and separation.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, Assam 785001, India.
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Harsh Ranawat
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Rd., Taichung 40447, Taiwan.
| |
Collapse
|
8
|
Pan L, Zhai G, Yang X, Yu H, Cheng C. Thermosensitive Microgels-Decorated Magnetic Graphene Oxides for Specific Recognition and Adsorption of Pb(II) from Aqueous Solution. ACS OMEGA 2019; 4:3933-3945. [PMID: 31459602 PMCID: PMC6648301 DOI: 10.1021/acsomega.8b03539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Herein, we report a novel type of smart graphene oxide nanocomposites (MGO@PNB) with excellent magnetism and high thermosensitive ion-recognition selectivity of lead ions (Pb2+). The MGO@PNB are fabricated by immobilizing superparamagnetic Fe3O4 nanoparticles (NPs) and poly(N-isopropylacrylamide-co-benzo-18-crown-6 acrylamide) thermosensitive microgels (PNB) onto graphene oxide (GO) nanosheets using a simple one-step solvothermal method and mussel-inspired polydopamine chemistry. The PNB are composed of cross-linked poly(N-isopropylacrylamide) (PNIPAM) chains with numerous appended 18-crown-6 units. The 18-crown-6 units serve as hosts that can selectively recognize and capture Pb2+ from aqueous solution, and the PNIPAM chains act as a microenvironmental actuator for the inclusion constants of 18-crown-6/Pb2+ host-guest complexes. The loaded Fe3O4 NPs endow the MGO@PNB with convenient magnetic separability. The fabricated MGO@PNB demonstrate remarkably high ion-recognition selectivity of Pb2+ among the coexisting metal ions because of the formation of stable 18-crown-6/Pb2+ inclusion complexes. Most interestingly, the MGO@PNB show excellent thermosensitive adsorption ability toward Pb2+ due to the incorporation of PNIPAM functional chains on the GO. Further thermodynamic studies indicate that the adsorption of Pb2+ onto the MGO@PNB is a spontaneous and endothermic process. The adsorption kinetics and isotherm data can be well described by the pseudo-second-order kinetic model and the Langmuir isotherm model, respectively. Most importantly, the Pb2+-loaded MGO@PNB can be more easily regenerated by alternatively washing with hot/cold water than the commonly used regeneration methods. Such multifunctional graphene oxide nanocomposites could be used for specific recognition and removal of Pb2+ from water environment.
Collapse
Affiliation(s)
| | | | - Xiaorong Yang
- College of Chemistry and
Environment Protection Engineering, Southwest
Minzu University, No. 16 South Section 4, Yihuan Road, Chengdu, Sichuan 610041, P. R. China
| | - Hairong Yu
- College of Chemistry and
Environment Protection Engineering, Southwest
Minzu University, No. 16 South Section 4, Yihuan Road, Chengdu, Sichuan 610041, P. R. China
| | - Changjing Cheng
- College of Chemistry and
Environment Protection Engineering, Southwest
Minzu University, No. 16 South Section 4, Yihuan Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
9
|
Yi Y, Zhang D, Ma Y, Wu X, Zhu G. Dual-Signal Electrochemical Enantiospecific Recognition System via Competitive Supramolecular Host–Guest Interactions: The Case of Phenylalanine. Anal Chem 2019; 91:2908-2915. [DOI: 10.1021/acs.analchem.8b05047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Depeng Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuzhi Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, People’s Republic of China
- Department of Applied Biology and Chemical Technology, and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong
| |
Collapse
|