1
|
Hammi N, Boundor M, Chen S, Couzon N, El Kadib A, Ferri A, Pourpoint F, Loiseau T, Volkringer C, Royer S, Dhainaut J. Evaporation-Induced Reticular Growth of UiO-66_NH 2 in Chitosan Films: Adsorption of Iodine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3952-3961. [PMID: 39763431 DOI: 10.1021/acsami.4c18621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH2/chitosan (ZrCSx-f) films were designed by crystallizing UiO-66_NH2 within a chitosan (CS) skeleton. The resulting ZrCSx-f films displayed remarkable homogeneity with high loadings of UiO-66_NH2 crystals, up to 45 wt %, coupled to a high adsorption capacity of iodine in gas phase, up to 317 mg.g-1.
Collapse
Affiliation(s)
- Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille 59000, France
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | | | - Shuo Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | | | - Anthony Ferri
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lens F-62300, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Institut Universitaire de France, 1 rue Descartes, Paris 75005, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
2
|
Wrońska N, Felczak A, Niedziałkowska K, Kędzierska M, Bryszewska M, Benzaouia MA, El Kadib A, Miłowska K, Lisowska K. Antifungal Chitosan Nanocomposites-A New Perspective for Extending Food Storage. Int J Mol Sci 2024; 25:13186. [PMID: 39684896 DOI: 10.3390/ijms252313186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Chitosan, a biopolymer derived from chitin, exhibits significant antifungal properties, making it a valuable compound for various applications in agriculture food preservation, and biomedicine. The present study aimed to assess the antifungal properties of chitosan-modified films using sol-gel derivatives (CS:ZnO) or graphene-filled chitosan, (CS:GO and CS:rGO) against two strains of fungi that are the most common cause of food spoilage: Aspergillus flavus ATCC 9643 and Penicillium expansum DSM 1282. The results indicate important differences in the antifungal activity of native chitosan films and zinc oxide-modified chitosan films. CS:ZnO nanocomposites (2:1 and 5:1) completely inhibited spore germination of the two tested fungal strains. Furthermore, a decrease in spore viability was observed after exposure to CS:Zn films. Significant differences in the permeability of cell envelopes were observed in the A. flavus. Moreover, the genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. Our studies showed that the tested nanocomposites did not exhibit genotoxicity towards human skin fibroblasts, and significant damage in the DNA of keratinocytes treated with CS:ZnO composites. Nanocomposites based on chitosan may help reduce synthetic fungicides and contribute to sustainable food production and food preservation practices.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| | - Katarzyna Niedziałkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Mohamed Amine Benzaouia
- Engineering Division, Euromed Research Center, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco
| | - Abdelkrim El Kadib
- Engineering Division, Euromed Research Center, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Wrońska N, Katir N, Nowak-Lange M, El Kadib A, Lisowska K. Biodegradable Chitosan-Based Films as an Alternative to Plastic Packaging. Foods 2023; 12:3519. [PMID: 37761228 PMCID: PMC10530273 DOI: 10.3390/foods12183519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of synthetic packaging on environmental pollution has been observed for years. One of the recent trends of green technology is the development of biomaterials made from food processing waste as an alternative to plastic packaging. Polymers obtained from some polysaccharides, such as chitosan, could be an excellent solution. This study investigated the biodegradability of chitosan-metal oxide films (ZnO, TiO2, Fe2O3) and chitosan-modified graphene films (CS-GO-Ag) in a soil environment. We have previously demonstrated that these films have excellent mechanical properties and exhibit antibacterial activity. This study aimed to examine these films' biodegradability and the possibility of their potential use in the packaging industry. The obtained results show that soil microorganisms were able to utilize chitosan films as the source of carbon and nitrogen, thus providing essential evidence about the biodegradability of CS, CS:Zn (20:1; 10:1), and CS:Fe2O3 (20:1) films. After 6 weeks of incubation, the complete degradation of the CS-Fe2O3 20:1 sample was noted, while after 8 weeks, CS-ZnO 20:1 and CS-ZnO 10:1 were degraded. This is a very positive result that points to the practical aspect of the biodegradability of such films in soil, where garbage is casually dumped and buried. Once selected, biodegradable films can be used as an alternative to plastic packaging, which contributes to the reduction in pollution in the environment.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland (K.L.)
| | - Nadia Katir
- Engineering Division, Euromed Research Center, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fes 30070, Morocco (A.E.K.)
| | - Marta Nowak-Lange
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland (K.L.)
| | - Abdelkrim El Kadib
- Engineering Division, Euromed Research Center, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fes 30070, Morocco (A.E.K.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland (K.L.)
| |
Collapse
|
4
|
Chandra F, Laha P, Benyettou F, Skorjanc T, Saleh N. Separation of mercuric ions using 2-thienylbenzimidazole/cucurbit[7]uril/iron-oxide nanoparticles by pH control. Sci Rep 2023; 13:11287. [PMID: 37438417 DOI: 10.1038/s41598-023-38199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
2-Thienylbenzimidazole (TBI)/cucurbit[7]uril (CB7) host-guest complex was used as a motif to significantly improve the turnover of γ-Fe3O4 magnetic nanoparticles for potential application in the separation of toxic mercuric ions in polluted water samples. The mechanism of restoring the original solid materials is based on applying the pH-controlled preferential binding of the CB7 host to the TBI guest. The analytical application of this concept has not been realized in the literature. The pH-controlled stimuli-responsive abilities were confirmed in aqueous solution by the three-order of magnitudes higher stability constant of the protonated TBIH+/CB7 complex (e.g., K = 4.8 × 108 M-1) when compared to neutral TBI/CB7 complex (e.g., K = 2.4 × 105 M-1), also manifested in an increase in pKa values by ~ 3.3 units in the ground state. The supramolecular interaction and adsorption on iron oxide nanoparticles (NPs) were also spectroscopically confirmed in the solid state. The excited-state lifetime values of TBI/CB7NPs increased upon lowering the pH values (e.g., from 0.6 to 1.3 ns) with a concomitant blue shift of ~ 25 nm because of polarity effects. The time-resolved photoluminescent behaviors of the final solids in the presence of CB7 ensured pH-driven reusable systems for capturing toxic mercuric ions. The study offers a unique approach for the controllable separation of mercury ions using an external magnet and in response to pH through preferential binding of the host to guest molecules on the top of magnetic surfaces.
Collapse
Affiliation(s)
- Falguni Chandra
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, PO. Box 15551, Al Ain, United Arab Emirates
| | - Paltan Laha
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, PO. Box 15551, Al Ain, United Arab Emirates
| | - Farah Benyettou
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Tina Skorjanc
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, PO. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Blilid S, Boundor M, Katir N, El Achaby M, Lahcini M, Majoral JP, Bousmina M, El Kadib A. Expanding Chitosan Reticular Chemistry Using Multifunctional and Thermally Stable Phosphorus-Containing Dendrimers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Mohamed Boundor
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Mounir El Achaby
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| |
Collapse
|
6
|
Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers (Basel) 2022; 14:polym14193989. [PMID: 36235937 PMCID: PMC9571330 DOI: 10.3390/polym14193989] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Crustacean shells are a sustainable source of chitin. Extracting chitin from crustacean shells is ongoing research, much of which is devoted to devising a sustainable process that yields high-quality chitin with minimal waste. Chemical and biological methods have been used extensively for this purpose; more recently, methods based on ionic liquids and deep eutectic solvents have been explored. Extracted chitin can be converted into chitosan or nanochitin. Once chitin is obtained and modified into the desired form, it can be used in a wide array of applications, including as a filler material, in adsorbents, and as a component in biomaterials, among others. Describing the extraction of chitin, synthesis of chitosan and nanochitin, and applications of these materials is the aim of this review. The first section of this review summarizes and compares common chitin extraction methods, highlighting the benefits and shortcomings of each, followed by descriptions of methods to convert chitin into chitosan and nanochitin. The second section of this review discusses some of the wide range of applications of chitin and its derivatives.
Collapse
|
7
|
Li CH, Liu YN, Zhang H, Shi Z. Treatment effect of Co(II)-coordination polymers on postpartum depression by regulating 5-HT content. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials. Int J Mol Sci 2022; 23:ijms23105585. [PMID: 35628396 PMCID: PMC9142123 DOI: 10.3390/ijms23105585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
Micrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework. Biological activity of the nano-composites films was also studied including their hemolytic activity, methemoglobin, prothrombin, and thrombine time. The effect of the films on fibroblasts and keratinocytes of human skin was also investigated with a special emphasis on the role played by the incorporated metal oxide. This comparative study sheds light on the crucial biological response of the ceramic phase embedded inside of the films, with titanium dioxide being the most promising for wound healing purposes.
Collapse
|
9
|
Cu nanoparticles embedded on reticular chitosan-derived N-doped carbon: Application to the catalytic hydrogenation of alkenes, alkynes and N-heteroarenes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Katir N, El Haskouri J, Amoros P, El Kadib A. Cooperative assembly of redistributed arylgermanium-bearing alkoxysilanes in a mesostructured siloxane network. NEW J CHEM 2022. [DOI: 10.1039/d2nj02868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three redistributed arylgermanium-bearing mono-, bis- and tris-triethoxysilyl arms were designed, cocondensed with TEOS to access SBA-15-type materials and embedded in chitosan to prepare functional bioplastics.
Collapse
Affiliation(s)
- Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Jamal El Haskouri
- Instituto de Ciència de los Materials de la Universidad de Valencia, Calle catedratico José Beltran, 2 CP 46980 Paterna Valencia, Spain
| | - Pedro Amoros
- Instituto de Ciència de los Materials de la Universidad de Valencia, Calle catedratico José Beltran, 2 CP 46980 Paterna Valencia, Spain
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| |
Collapse
|
11
|
Hammi N, Marcotte N, Marinova M, Draoui K, Royer S, El Kadib A. Nanostructured metal oxide@carbon dots through sequential chitosan templating and carbonisation route. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Kędzierska M, Blilid S, Miłowska K, Kołodziejczyk-Czepas J, Katir N, Lahcini M, El Kadib A, Bryszewska M. Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. Int J Mol Sci 2021; 22:11386. [PMID: 34768816 PMCID: PMC8583768 DOI: 10.3390/ijms222111386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
13
|
Wrońska N, Katir N, Miłowska K, Hammi N, Nowak M, Kędzierska M, Anouar A, Zawadzka K, Bryszewska M, El Kadib A, Lisowska K. Antimicrobial Effect of Chitosan Films on Food Spoilage Bacteria. Int J Mol Sci 2021; 22:5839. [PMID: 34072512 PMCID: PMC8198402 DOI: 10.3390/ijms22115839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Nadia Katir
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Nisrine Hammi
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Aicha Anouar
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| |
Collapse
|
14
|
Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr Polym 2020; 232:115823. [PMID: 31952618 DOI: 10.1016/j.carbpol.2019.115823] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023]
Abstract
The aim of this study was to develop novel nanofibrous membranes based on the quaternary ammonium N-halamine chitosan (CSENDMH) and polyvinyl alcohol (PVA) for antibacterial and hemostasis wound dressing. To improve the antimicrobial properties of nanofibrous membranes, a new chitosan-quaternary ammonium N-halamine derivative was successfully synthesized, and the structure was analyzed by 1H NMR and 13C NMR, fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The morphological and water absorption ability studies showed that the membrane had a uniform bead-free network and high porosity structure like natural extracellular matrix as well as high hydrophilicity. For in vitro evaluation of the hemostatic effect, the membranes showed excellent blood clotting capacity, especially the PVA/CSENDMH membranes. The antimicrobial assay demonstrated excellent antibacterial activity of nanofibrous membranes against both gram-negative and gram-positive bacteria. Furthermore, the cytocompatibility assay results indicated that human fibroblasts could adhere and proliferate on the membranes, thus corroborating their biocompatibility.
Collapse
|
15
|
Chabbi J, Aqil A, Katir N, Vertruyen B, Jerôme C, Lahcini M, El Kadib A. Aldehyde-conjugated chitosan-graphene oxide glucodynamers: Ternary cooperative assembly and controlled chemical release. Carbohydr Polym 2019; 230:115634. [PMID: 31887867 DOI: 10.1016/j.carbpol.2019.115634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
Simultaneous condensation of aromatic aldehydes (ArxCHO; x = 1-4) on chitosan biopolymer (CS) affords, after water-evaporation, structurally-conjugated aryl-functionalized CS-Arx-f films. Similarly, cooperative assembly of two-dimensional nanometric graphene oxide (GO), aromatic aldehyde and chitosan provides transparent, flexible and crack-free aldehyde-functionalized, ternary-reinforced CS-Arx-GO-f nanocomposite films. Homogenous films were obtained using ortho-hydroxybenzaldehyde Ar1 while the para-hydroxybenzaldehyde Ar4 was prone to packing inside. Textural and mechanical properties were investigated and expectedly, significant improvement was found for CS-Ar1-GO-f because of the great dispersion of the aromatic and the presence of the filler. The sensitivity of unsaturated CN imine bond to hydrolysis was explored for triggering controlled release of aromatics from the as-prepared films. All of them were found to induce a time-dependent aromatic release. It has been moreover observed that the release was significantly delayed in CS-Arx-GO-f compared to CS-Arx-f, a fact attributed to the interplay of the ring with the basal and edges of graphene oxide, through π-π stacking and additional hydrogen bonding interactions. This finding shows that beyond the conventional wisdom using fillers for improving thermal and mechanical properties, the tiny carbon sheets can act as a regulator for aldehyde release, thereby providing a way for more controlled chemical delivery from confined nanocomposites.
Collapse
Affiliation(s)
- Jamal Chabbi
- Euromed Research Center. Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda. 30070 Fès, Morocco; Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium; Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Abdelhafid Aqil
- Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium
| | - Nadia Katir
- Euromed Research Center. Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda. 30070 Fès, Morocco
| | - Bénédicte Vertruyen
- Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium
| | - Christine Jerôme
- Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium
| | - Mohamed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center. Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda. 30070 Fès, Morocco.
| |
Collapse
|