1
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
2
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
3
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
4
|
Kuznetsov D, Dezhurov S, Krylsky D, Novikov V, Neschisliaev V, Kuznetsova A. Use of folic acid nanosensors with excellent photostability for hybrid imaging. J Zhejiang Univ Sci B 2022; 23:784-790. [PMID: 36111575 PMCID: PMC9483608 DOI: 10.1631/jzus.b2200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/22/2022] [Indexed: 12/09/2022]
Abstract
Sentinel lymph node (SLN) mapping and tumor-boundary delineation play a key role in cancer surgery, as they have great potential to reduce surgical intervention and increase relapse-free survival rates of patients. The autofluorescence imaging (AFI) method can improve the efficiency of tumor delineation and optimize the scope of surgical intervention, but there are still no fluorescent drugs that can be used with such a method to form a hybrid imaging technique. Another problem is bleaching when fluorescent dyes are conjugated with folic acid. This study reports, for the first time, nanosensors with excellent photostability and compatibility with endoscopes for AFI, which makes simultaneous hybrid imaging possible. After functionalization of the quantum dot (QD) surfaces, we found that they bound effectively to MCF-7 cancer cells. The diagnostic value of simultaneous hybrid imaging using common AFI equipment in delineating tumor boundaries and mapping SLN can reduce the cost of diagnosis and increase its reliability.
Collapse
Affiliation(s)
- Denis Kuznetsov
- G N. Gabrichevsky Scientific and Research Institute of Epidemiology and Microbiology, Moscow 125212, Russia.
- Perm State Pharmaceutical Academy, Perm 614990, Russia.
| | - Sergey Dezhurov
- Research Institute of Applied Acoustics, Center of High Technologies, Dubna 141980, Russia
| | - Dmitri Krylsky
- Research Institute of Applied Acoustics, Center of High Technologies, Dubna 141980, Russia
| | | | | | | |
Collapse
|
5
|
Skripka A, Mendez-Gonzalez D, Marin R, Ximendes E, Del Rosal B, Jaque D, Rodríguez-Sevilla P. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. NANOSCALE ADVANCES 2021; 3:6310-6329. [PMID: 36133487 PMCID: PMC9417871 DOI: 10.1039/d1na00502b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/03/2021] [Indexed: 05/17/2023]
Abstract
Research in novel materials has been extremely active over the past few decades, wherein a major area of interest has been nanoparticles with special optical properties. These structures can overcome some of the intrinsic limitations of contrast agents routinely used in medical practice, while offering additional functionalities. Materials that absorb or scatter near infrared light, to which biological tissues are partially transparent, have attracted significant attention and demonstrated their potential in preclinical research. In this review, we provide an at-a-glance overview of the most recent developments in near infrared nanoparticles that could have far-reaching applications in the life sciences. We focus on materials that offer additional functionalities besides diagnosis based on optical contrast: multiple imaging modalities (multimodal imaging), sensing of physical and chemical cues (multivariate diagnosis), or therapeutic activity (theranostics). Besides presenting relevant case studies for each class of optically active materials, we discuss their design and safety considerations, detailing the potential hurdles that may complicate their clinical translation. While multifunctional nanomaterials have shown promise in preclinical research, the field is still in its infancy; there is plenty of room to maximize its impact in preclinical studies as well as to deliver it to the clinics.
Collapse
Affiliation(s)
- Artiom Skripka
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Diego Mendez-Gonzalez
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
6
|
Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021; 338:224-243. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
There are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.g., nano-immunotherapy, nano-stem cell therapy, and nano-gene therapy) investigated for brain cancer treatment. Besides therapeutic efficacy point-of-view, efforts are being made to explore ways projected to tune such developed nano-therapeutic for treating patients in personalized manner via controlling size, drug loading, delivery, and retention. Personalized brain tumor management based on advanced nano-therapies can potentially lead to excellent therapeutic benefits based on unique genetic signatures in patients and their individual disease profile. Moreover, applicability of nano-systems as stimulants to manage the brain cancer growth factors has also been discussed in photodynamic therapy and radiotherapy. Overall, this review offers a comprehensive information on emerging opportunities in nanotechnology for advancing the brain cancer treatment.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - U T Uthappa
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Chandra Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States.
| |
Collapse
|
7
|
Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021; 294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
The application of nanostructured materials in medicine is a rapidly evolving area of research that includes both the diagnosis and treatment of various diseases. Metals, metal oxides and carbon-based nanomaterials have shown much promise in medical technological advancements due to their tunable physical, chemical and biological properties. The nanoscale properties, especially the size, shape, surface chemistry and stability makes them highly desirable for diagnosing and treating various diseases, including cancers. Major applications of nanomaterials in cancer diagnosis include in vivo bioimaging and molecular marker detection, mainly as image contrast agents using modalities such as radio, magnetic resonance, and ultrasound imaging. When a suitable targeting ligand is attached on the nanomaterial surface, it can help pinpoint the disease site during imaging. The application of nanostructured materials in cancer diagnosis can help in the early detection, treatment and patient follow-up . This review aims to gather and present the information regarding the application of nanotechnology in cancer diagnosis. We also discuss the challenges and prospects regarding the application of nanomaterials as cancer diagnostic tools.
Collapse
|
8
|
Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics 2019; 11:E543. [PMID: 31635367 PMCID: PMC6836276 DOI: 10.3390/pharmaceutics11100543] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|