1
|
Joseph N, Mirzamani M, Abudiyah T, Al-Antaki AHM, Jellicoe M, Harvey DP, Crawley E, Chuah C, Whitten AE, Gilbert EP, Qian S, He L, Michael MZ, Kumari H, Raston CL. Vortex fluidic regulated phospholipid equilibria involving liposomes down to sub-micelle size assemblies. NANOSCALE ADVANCES 2024; 6:1202-1212. [PMID: 38356632 PMCID: PMC10863723 DOI: 10.1039/d3na01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes. The high yielding and high throughput continuous flow process has a 45° tilted rapidly rotating glass tube with an inner hydrophobic surface. Processing is also possible in the confined mode of operation which is effective for labelling pre-VFD-prepared liposomes with fluorophore tags for subsequent mechanistic studies on the fate of liposomes under shear stress in the VFD. In situ small-angle neutron scattering (SANS) established the co-existence of liposomes ∼110 nm with small rafts, micelles, distorted micelles, or sub-micelle size assemblies of phospholipid, for increasing rotation speeds. The equilibria between these smaller entities and ∼110 nm liposomes for a specific rotational speed of the tube is consistent with the spatial arrangement and dimensionality of topological fluid flow regimes in the VFD. The prevalence for the formation of ∼110 nm diameter liposomes establishes that this is typically the most stable structure from the bottom-up self-assembly of the phospholipid and is in accord with dimensions of exosomes.
Collapse
Affiliation(s)
- Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Tarfah Abudiyah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Chemistry, Faculty of Science, University of Kufa Najaf 54001 Iraq
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Emily Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Elliot Paul Gilbert
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Shuo Qian
- The Second Target Station Project of SNS, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer (FCIC), Flinders Medical Centre (FMC) Bedford Park SA 5042 Australia
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
2
|
Vimalanathan K, Zhang Z, Zou J, Raston CL. Vortex fluidic high shear induced crystallisation of fullerene C 70 into nanotubules. Chem Commun (Camb) 2023. [PMID: 37469308 DOI: 10.1039/d3cc02464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hollow C70 nanotubules are formed under high shear within the thin film of a vortex fluidic device (VFD) without the need for using auxiliary reagents, high temperatures and pressures, and/or requiring downstream processing. This novel bottom-up crystallisation process involves intense micro mixing of two liquids (toluene solution of C70 and anti-solvent, isopropyl alcohol) within a thin film in the VFD to precisely control the hierarchical assembly of C70 molecules into hollow nanotubules. The mechanism of self-assembly was consistent with them being a mould of the high shear double helical topological flow from Faraday waves coupled with Coriolis forces generated within the thin film.
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| | - Zhi Zhang
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
- Materials Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
- Materials Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| |
Collapse
|
3
|
Duczynski J, Raston CL, Stubbs KA. Exploiting angled thin film vortex microfluidics for expeditious syntheses of iminosugars. RSC Adv 2022; 12:23162-23168. [PMID: 36090411 PMCID: PMC9384806 DOI: 10.1039/d2ra04409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Iminosugars are important compounds in the area of carbohydrate-based therapeutics. A simple synthetic methodology utilizing the vortex fluidic thin film microfluidic reactor is effective in the synthesis of such compounds for diverse reaction types, with the optimal tilt angle of the reactor at 45° and the optimal rotational speed dependent on the nature of the liquid.
Collapse
Affiliation(s)
- Jeremy Duczynski
- School of Molecular Sciences, University of Western Australia Crawley WA 6009 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia Crawley WA 6009 Australia
| |
Collapse
|
4
|
Vimalanathan K, Scott J, Pan X, Luo X, Rahpeima S, Sun Q, Zou J, Bansal N, Prabawati E, Zhang W, Darwish N, Andersson MR, Li Q, Raston CL. Continuous flow fabrication of green graphene oxide in aqueous hydrogen peroxide. NANOSCALE ADVANCES 2022; 4:3121-3130. [PMID: 36132816 PMCID: PMC9419056 DOI: 10.1039/d2na00310d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Highly processible graphene oxide (GO) has a diversity of applications as a material readily dispersed in aqueous media. However, methods for preparing such free-standing GO use hazardous and toxic reagents and generate significant waste streams. This is an impediment for uptake of GO in any application, for developing sustainable technologies and industries, and overcoming this remains a major challenge. We have developed a robust scalable continuous flow method for fabricating GO directly from graphite in 30% aqueous hydrogen peroxide which dramatically minimises the generation of waste. The process features the continuous flow thin film microfluidic vortex fluidic device (VFD), operating at specific conditions while irradiated sequentially by UV LED than a NIR pulsed laser. The resulting 'green' graphene oxide (gGO) has unique properties, possessing highly oxidized edges with large intact sp2 domains which gives rise to exceptional electrical and optical properties, including purple to deep blue emission of narrow full width at half maximum (<35 nm). Colloidally stable gGO exhibits cytotoxicity owing to the oxidised surface groups while solid-state films of gGO are biocompatible. The continuous flow method of generating gGO also provides unprecedented control of the level of oxidation and its location in the exfoliated graphene sheets by harnessing the high shear topological fluid flows in the liquid, and varying the wavelength, power and pulse frequency of the light source.
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - James Scott
- Environmental Engineering and Queensland Micro and Nanotechnology Centre, Griffith University Brisbane QLD 4111 Australia
| | - Xun Pan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland St Lucia QLD 4072 Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland St Lucia QLD 4072 Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland St Lucia QLD Australia
| | - Elisabeth Prabawati
- School of Agriculture and Food Sciences, The University of Queensland St Lucia QLD Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Mats R Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Qin Li
- Environmental Engineering and Queensland Micro and Nanotechnology Centre, Griffith University Brisbane QLD 4111 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
5
|
Lin G, Qiu H. Diverse Supports for Immobilization of Catalysts in Continuous Flow Reactors. Chemistry 2022; 28:e202200069. [DOI: 10.1002/chem.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
6
|
Abstract
Despite providing interesting solutions to reduce the number of synthetic steps, to decrease energy consumption or to generate less waste, therefore contributing to a more sustainable way of producing important chemicals, the expansion of the use of homogeneous catalysis in industrial processes is hampered by several drawbacks. One of the most important is the difficulty to recycle the noble metals generating potential high costs and pollution of the synthesized products by metal traces detrimental to their applications. Supporting the metals on abundant and cheap biosourced polymers has recently appeared as an almost ideal solution: They are much easier to recover from the reaction medium and usually maintain high catalytic activity. The present bibliographical review focuses on the development of catalysts based on group 10 transition metals (nickel, palladium, platinum) supported on biopolymers obtained from wood, such as cellulose, hemicellulose, lignin, and their derivatives. The applications of these catalysts in organic synthesis or depollution are also addressed in this review with examples of C-C couplings, oxidation, or hydrogenation reactions.
Collapse
|
7
|
Vimalanathan K, Palmer T, Gardner Z, Ling I, Rahpeima S, Elmas S, Gascooke JR, Gibson CT, Sun Q, Zou J, Andersson MR, Darwish N, Raston CL. High shear in situ exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. NANOSCALE ADVANCES 2021; 3:5785-5792. [PMID: 36132680 PMCID: PMC9419649 DOI: 10.1039/d1na00598g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 06/14/2023]
Abstract
A diversity of two-dimensional nanomaterials has recently emerged with recent attention turning to the post-transition metal elements, in particular material derived from liquid metals and eutectic melts below 330 °C where processing is more flexible and in the temperature regime suitable for industry. This has been explored for liquid gallium using an angled vortex fluidic device (VFD) to fabricate ultrathin gallium oxide (Ga2O3) sheets under continuous flow conditions. We have established the nanosheets to form highly insulating material and have electrocatalytic activity for hydrogen evolution, with a Tafel slope of 39 mV dec-1 revealing promoting effects of the surface oxidation (passivation layer).
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Timotheos Palmer
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Irene Ling
- School of Science, Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Sait Elmas
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Jason R Gascooke
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Christopher T Gibson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Mats R Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
8
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Yamada T, Park K, Sajiki H. Development of Solid Catalysts for Selective Reactions and their Application to Continuous-Flow Reactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | | | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
10
|
Ahmad H. Celluloses as Green Support of Palladium Nanoparticles for Application in Heterogeneous Catalysis: A Brief Review. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02000-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Yamada T, Teranishi W, Park K, Jiang J, Tachikawa T, Furusato S, Sajiki H. Development of Carbon‐Neutral Cellulose‐Supported Heterogeneous Palladium Catalysts for Chemoselective Hydrogenation. ChemCatChem 2020. [DOI: 10.1002/cctc.202000805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry Gifu Pharmaceutical University 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Wataru Teranishi
- Laboratory of Organic Chemistry Gifu Pharmaceutical University 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry Gifu Pharmaceutical University 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Jing Jiang
- Laboratory of Organic Chemistry Gifu Pharmaceutical University 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Takumu Tachikawa
- Laboratory of Organic Chemistry Gifu Pharmaceutical University 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Shinichi Furusato
- Production engineering department JNC Corporation 1-1 Noguchi, Minamata Kumamoto 867-8501 Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry Gifu Pharmaceutical University 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
12
|
Pye SJ, Chalker JM, Raston CL. Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts. Aust J Chem 2020. [DOI: 10.1071/ch20005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ruthenium-catalysed ethenolysis occurs in a vortex fluidic device (VFD) – a scalable, thin-film microfluidic continuous flow process. This process takes advantage of the efficient mass transfer of gaseous reagents into the dynamic thin film of liquid. Also reported is the rapid quenching of the ruthenium-based olefin metathesis catalyst by the addition of a saturated solution of N-acetyl-l-cysteine in MeCN, as a convenient alternative to previously reported quenching methods.
Collapse
|
13
|
Al-Antaki AHM, Lawrance WD, Raston CL. Dynamic thin film mediated slicing of boron nitride nanotubes. NANOSCALE ADVANCES 2019; 1:4722-4728. [PMID: 36133138 PMCID: PMC9417105 DOI: 10.1039/c9na00481e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 06/16/2023]
Abstract
A method has been developed to slice boron nitride nanotubes BNNTs under continuous flow in a vortex fluidic device (VFD), along with a method to partially purify the as received BNNT containing material. The latter involves heating the BNNTs to 600 °C followed by dispersing in a 1 : 3 isopropyl alcohol (IPA) and water mixture at 100 °C. The VFD mediated slicing of the BNNTs comprises irradiating the rapidly rotating glass tube (20 mm OD) with a pulsed Nd:YAG laser. Systematically exploring the operating parameter space of the VFD established slicing of ca. 200 μm long purified BNNTs down to 340 nm to 400 nm, in ca. 53% yield, in a 1 : 1 mixture of IPA and water, in the absence of reagents/harsh chemicals, at a flow rate of 0.45 mL min-1, a concentration of 0.1 mg mL-1 BNNTs and an 8.5k rpm rotational speed, with the pulsed laser operating at 1064 nm and 250 mJ per pulse.
Collapse
Affiliation(s)
- Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5042 Australia
- Department of Chemistry, Faculty of Sciences, Kufa University Kufa Najaf Iraq
| | - Warren D Lawrance
- College of Science and Engineering, Flinders University Adelaide SA 5042 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5042 Australia
| |
Collapse
|
14
|
Yamada T, Kobayashi Y, Ito N, Ichikawa T, Park K, Kunishima K, Ueda S, Mizuno M, Adachi T, Sawama Y, Monguchi Y, Sajiki H. Polyethyleneimine-Modified Polymer as an Efficient Palladium Scavenger and Effective Catalyst Support for a Functional Heterogeneous Palladium Catalyst. ACS OMEGA 2019; 4:10243-10251. [PMID: 31460116 PMCID: PMC6649293 DOI: 10.1021/acsomega.9b00707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 05/27/2023]
Abstract
The polyethyleneimine-modified polymers, polystyrene-divinylbenzene-based (TAs) and polymethacrylate-based polymers (TAm), were used as palladium scavengers to eliminate residual palladium species after palladium on carbon-catalyzed Sonogashira-type coupling reaction. Since both TAs and TAm indicated relatively favorable elimination abilities toward residual palladium species in the reaction mixture, the affinities of TAs and TAm for palladium species were used as supports for palladium catalysts. The TAm-supported palladium catalyst (Pd/TAm) indicated better catalyst properties for the chemoselective hydrogenation compared to those of the corresponding TAs-supported palladium catalyst (Pd/TAs). Aromatic benzyl ethers; aromatic and aliphatic N-Cbzs; and aromatic carbonyl groups were smoothly hydrogenated in the presence of 1-5 mol % of Pd/TAm in MeOH or 2-PrOH. In contrast, the hydrogenation of aromatic ketones was selectively suppressed in morpholine which act as appropriate catalyst poison and solvent. Furthermore, Pd/TAm-catalyzed chemoselective hydrogenation was applicable to continuous-flow reaction.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yutaka Kobayashi
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoya Ito
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tomohiro Ichikawa
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kouki Kunishima
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Shun Ueda
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Masahiro Mizuno
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tadashi Adachi
- Separation
Materials Group, Functional Organic Materials Laboratory, Fukuoka
R&D Center, Mitsubishi Chemical Corporation, 1-1 Kurosaki-Shiroishi, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 806-0004, Japan
| | - Yoshinari Sawama
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yasunari Monguchi
- Laboratory
of Organic Chemistry, Daiichi University
of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hironao Sajiki
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|