1
|
Chakraborty S, Bindra AK, Thomas A, Zhao Y, Ajayaghosh A. pH-Assisted multichannel heat shock monitoring in the endoplasmic reticulum with a pyridinium fluorophore. Chem Sci 2024; 15:10851-10857. [PMID: 39027278 PMCID: PMC11253182 DOI: 10.1039/d4sc01977f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
Heat shock is a global health concern as it causes permanent damage to living cells and has a relatively high mortality rate. Therefore, diagnostic tools that facilitate a better understanding of heat shock damage and the defense mechanism at the sub-cellular level are of great importance. In this report, we have demonstrated the use of a pyridinium-based fluorescent molecule, PM-ER-OH, as a 'multichannel' imaging probe to monitor the pH change associated with a heat shock in the endoplasmic reticulum. Among the three pyridinium derivatives synthesized, PM-ER-OH was chosen for study due to its excellent biocompatibility, good localization in the endoplasmic reticulum, and intracellular pH response signaled by a yellow fluorescence (λ max = 556 nm) at acidic pH and a far red fluorescence (λ max = 660 nm) at basic pH. By changing the excitation wavelength, we could modulate the fluorescence signal in 'turn-ON', single excitation ratiometric and 'turn-OFF' modes, making the fluorophore a 'multichannel' probe for both ex vitro and in vitro pH monitoring in the endoplasmic reticulum. The probe could efficiently monitor the pH change when heat shock was applied to cells either directly or in a pre-heated manner, which gives insight on cellular acidification caused by heat stress.
Collapse
Affiliation(s)
- Sandip Chakraborty
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anivind Kaur Bindra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Anagha Thomas
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Ayyappanpillai Ajayaghosh
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Chemistry, SRM Institute of Science and Technology Chennai 603203 India
| |
Collapse
|
2
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
3
|
Wang Z, Fang T, Fang Y, Xie P, Liu Y. Harnessing single fluorescent probe to image deoxyribonucleic acid and ribonucleic acid in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123216. [PMID: 37531682 DOI: 10.1016/j.saa.2023.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The roles of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in cells are closely related. However, the absence of molecular tools for simultaneous imaging of the two nucleic acids has prevented scientists from elucidating the regulatory mechanisms of nucleic acid interaction. The nucleic acid probes developed in recent years have ignored the regulatory relationship between DNA and RNA. Simultaneously imaging RNA and DNA in cells through a single small-molecule fluorescent probe is important. In this study, we propose a strategy for developing fluorescent probes localized to DNA and RNA to investigate their detection and imaging characteristics. The novel probe Bptp-RD has been successfully used for DNA and RNA imaging in cells. We investigated the detection and imaging characteristics of this nucleic acid probe and discovered the following: 1) the differences in the detection results of this nucleic acid probe for DNA and RNA come from the structural differences of the nucleic acids rather than chemical composition differences; 2) through using small-molecule probes to image a nucleic acid in cells, another nucleic acid can be visualized by reducing the fluorescence signal caused by DNA or RNA; 3) the order of response of the small-molecule fluorescent probe with intercalation and binding mechanisms to the type of nucleic acid structure is single chain, double chain, and ring. This work will help improve the understanding of RNA and DNA probes, and the novel probe has high potential to explore the interaction between RNA and DNA in cells.
Collapse
Affiliation(s)
- Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Tianhe Fang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Fang
- Jinan Haorui Biotechnology Co., Ltd, Jinan 250355, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
4
|
Peng H, Kong S, Deng X, Deng Q, Qi F, Liu C, Tang R. Development of a Ratiometric Fluorescent Probe with Zero Cross-Talk for the Detection of SO 2 Derivatives in Foods and Live Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14322-14329. [PMID: 37747790 DOI: 10.1021/acs.jafc.3c04056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Sulfur dioxide (SO2) derivatives are extensively utilized as both a preservative for foods and an active gaseous signal molecule in various physiological and pathological processes, but their excessive intake would bring harmful effects on human health; so, the determination of SO2 derivatives is of great importance. Herein, we developed a ratiometric fluorescent probe named 2-(2'-hydroxyphenyl)benzothiazole-3-ethyl-1,1,2-trimethyl-1H-benzo[e]indolium (HBT-EMBI) by introducing a hemicyanine unit of EMBI to an HBT group for the detection of SO2 derivatives via an excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) effects. The probe displays some advantages, such as a colorimetric change from purple to colorless, a ratiometric fluorescence with zero cross-talk, and a remarkably large emission shift (Δλ = 164 nm) under a single-wavelength excitation. Accordingly, the probe HBT-EMBI has been successfully employed for the colorimetric and ratiometric determination of SO2 derivatives in real food samples and the quantitative visualization of SO2 derivative variations in HepG2 cells.
Collapse
Affiliation(s)
- Huan Peng
- College of Material and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Suna Kong
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Xia Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Qirong Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Fengpei Qi
- College of Material and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China
| | - Changhui Liu
- College of Material and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China
| | - Ruiren Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
5
|
Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: design, mechanism, and application. Chem Commun (Camb) 2023; 59:2056-2071. [PMID: 36723346 DOI: 10.1039/d2cc06556h] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomarkers are essential in biology, physiology, and pharmacology; thus, their detection is of extensive importance. Fluorescent probes provide effective tools for detecting biomarkers exactly. Excited state intramolecular proton transfer (ESIPT), one of the significant photophysical processes that possesses specific photoisomerization between Keto and Enol forms, can effectively avoid annoying interference from the background with a large Stokes shift. Hence, ESIPT is an excellent choice for biomarker monitoring. Based on the ESIPT process, abundant probes were designed and synthesized using three major design methods. In this review, we conclude probes for 14 kinds of biomarkers based on ESIPT explored in the past five years, summarize these general design methods, and highlight their application for biomarker detection in vitro or in vivo.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Maolin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yongrong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yanjun Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Li Y, Dahal D, Pang Y. Fluorescence Lifetimes of NIR-Emitting Molecules with Excited-State Intramolecular Proton Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010125. [PMID: 36615319 PMCID: PMC9822172 DOI: 10.3390/molecules28010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Molecular probes based on the excited-state intramolecular proton-transfer (ESIPT) mechanism have emerged to be attractive candidates for various applications. Although the steady-state fluorescence mechanisms of these ESIPT-based probes have been reported extensively, less information is available about the fluorescence lifetime characteristics of newly developed NIR-emitting dyes. In this study, four NIR-emitting ESIPT dyes with different cyanine terminal groups were investigated to evaluate their fluorescence lifetime characteristics in a polar aprotic solvent such as CH2Cl2. By using the time-correlated single-photon counting (TCSPC) method, these ESIPT-based dyes revealed a two-component exponential decay (τ1 and τ2) in about 2-4 nanoseconds (ns). These two components could be related to the excited keto tautomers. With the aid of model compounds (5 and 6) and low-temperature fluorescence spectroscopy (at -189 ℃), this study identified the intramolecular charge transfer (ICT) as one of the major factors that influenced the τ values. The results of this study also revealed that both fluorescence lifetimes and fractional contributions of each component were significantly affected by the probe structures.
Collapse
|
7
|
Tang X, Zhu X, Xu H, Sun H, Han X, Li Q, Zhou B, Ni Z. Hydrogen-bond activated ESIPT in naphthalimide-based fluorescent probe for sensing volatile amines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121567. [PMID: 35810673 DOI: 10.1016/j.saa.2022.121567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Amines levels present important indicative value in food safety and human health. Although they are involved in some normal physiological responses of the organism, their overproduction or intake may cause pathological responses. Herein, we report a recyclable visual packaging bag for volatile amines detections based on the naphthylamide derivative N-S and its positive PL characteristics. Specifically, handmade test strips based on compound N-S have been applied to fish freshness labeling, and the cyclic fumigation experiment shows its restorable PL effect and efficiency. The possible PL transfer mechanism of naphthylamide derivative N-S is uncovered by the density functional theory (DFT) calculation and titration mass spectrometer and 1H NMR. This work expands a conjugation in a molecule by hydrogen-bond activated ESIPT (H-ESIPT) and provides a portable detection method for volatile amines detection.
Collapse
Affiliation(s)
- Xinxue Tang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Xuguang Zhu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Huilong Xu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Hao Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Xiang'en Han
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Qun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Binbin Zhou
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, PR China.
| | - Zhonghai Ni
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China.
| |
Collapse
|
8
|
Supabowornsathit K, Faikhruea K, Ditmangklo B, Jaroenchuensiri T, Wongsuwan S, Junpra-Ob S, Choopara I, Palaga T, Aonbangkhen C, Somboonna N, Taechalertpaisarn J, Vilaivan T. Dicationic styryl dyes for colorimetric and fluorescent detection of nucleic acids. Sci Rep 2022; 12:14250. [PMID: 35995925 PMCID: PMC9395382 DOI: 10.1038/s41598-022-18460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Nucleic acid staining dyes are important tools for the analysis and visualizing of DNA/RNA in vitro and in the cells. Nevertheless, the range of commercially accessible dyes is still rather limited, and they are often very costly. As a result, finding nontoxic, easily accessible dyes, with desirable optical characteristics remains important. Styryl dyes have recently gained popularity as potential biological staining agents with many appealing properties, including a straightforward synthesis procedure, excellent photostability, tunable fluorescence, and high fluorescence quantum yield in the presence of nucleic acid targets with low background fluorescence signals. In addition to fluorescence, styryl dyes are strongly colored and exhibit solvatochromic properties which make them useful as colorimetric stains for low-cost and rapid testing of nucleic acids. In this work, novel dicationic styryl dyes bearing quaternary ammonium groups are designed to improve binding strength and optical response with target nucleic acids which contain a negatively charged phosphate backbone. Optical properties of the newly synthesized styryl dyes have been studied in the presence and absence of nucleic acid targets with the aim to find new dyes that can sensitively and specifically change fluorescence and/or color in the presence of nucleic acid targets. The binding interaction and optical response of the dicationic styryl dyes with nucleic acid were superior to the corresponding monocationic styryl dyes. Applications of the developed dyes for colorimetric detection of DNA in vitro and imaging of cellular nucleic acids are also demonstrated.
Collapse
Affiliation(s)
- Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Boonsong Ditmangklo
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theeranuch Jaroenchuensiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sutthida Wongsuwan
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirikarn Junpra-Ob
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ilada Choopara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Che Z, Yan C, Wang X, Liao L. Organic
Near‐Infrared
Luminescent Materials Based on Excited State Intramolecular Proton Transfer Process. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zong‐Lu Che
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chang‐Cun Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078 Macau SAR China
| |
Collapse
|
10
|
Yu W, Wang L, Zhang N, Yan J, Zheng K. Wavelength-tunable fluorophores based on quinoline fused α-cyanovinyl derivatives: Synthesis, photophysics properties and imaging. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Kundu S, Das S, Dutta A, Patra A. Three in One: Stimuli-Responsive Fluorescence, Solid-State Emission, and Dual-Organelle Imaging Using a Pyrene-Benzophenone Derivative. J Phys Chem B 2022; 126:691-701. [PMID: 35030009 DOI: 10.1021/acs.jpcb.1c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small organic luminogens, owing to their contrasting stimuli-responsive fluorescence in solution along with strong emission in aggregated and solidstates, have been employed in optoelectronic devices, sensors, and bioimaging. Pyrene derivatives usually exhibit strong fluorescence and concentration-dependent excimer/aggregate emission in solution. However, the impacts of microenvironments on the monomer and aggregate emission bands and their relative intensities in solution, solid, and supramolecular aggregates are intriguing. The present study delineates a trade-off between the monomer and aggregate emissions of a pyrene-benzophenone derivative (ABzPy) in solution, in the solid-state, and in nanoaggregates through a combined spectroscopic and microscopic approach. The impact of external stimuli (viscosity, pH) on the aggregate emission was demonstrated using steady-state and time-resolved spectroscopy, including fluorescence correlation spectroscopy and fluorescence anisotropy decay analysis. The aggregate formation was noticed at a higher concentration (>10 μM) in solution, at 77 K (5 μM), and in the solid-state due to the π-π stacking interactions (3.6 Å) between two ABzPy molecules. In contrast, no aggregate formation was observed in the viscous medium as well as in a micellar environment even at a higher concentration of ABzPy (50 μM). The crystal structure analysis further shed light on the intermolecular hydrogen-bonding-assisted solid-state emission, which was found to be highly sensitive toward external stimuli like pH and mechanical forces. The broad emission band comprising both monomer and aggregate in the aqueous dispersion of nanoaggregates was used for the specific cellular imaging of lysosomes and lipid droplets, respectively.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abir Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
12
|
Ye YX, Pan JC, Chen XY, Jiang L, Jiao QC, Zhu HL, Liu JZ, Wang ZC. A new mitochondria-targeted fluorescent probe for exogenous and endogenous superoxide anion imaging in living cells and pneumonia tissue. Analyst 2022; 147:3534-3541. [DOI: 10.1039/d2an00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of in situ detection for superoxide anions by Mito-YX.
Collapse
Affiliation(s)
- Ya-Xi Ye
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Xin-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Jun-Zhong Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, 211111, Nanjing, China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
13
|
Dahal D, Ojha KR, Pokhrel S, Paruchuri S, Konopka M, Liu Q, Pang Y. NIR-emitting styryl dyes with large Stokes' shifts for imaging application: From cellular plasma membrane, mitochondria to Zebrafish neuromast. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 194:109629. [PMID: 34366501 PMCID: PMC8345024 DOI: 10.1016/j.dyepig.2021.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) emitting probes with very large Stokes' shifts play a crucial role in bioimaging applications, as the optical signals in this region exhibit high signal to background ratio and allow deeper tissue penetration. Herein we illustrate NIR-emitting probe 2 with very large Stokes' shifts (Δλ ≈ 260 - 272 nm) by integrating the excited-state intramolecular proton transfer (ESIPT) unit 2-(2'-hydroxyphenyl)benzoxazole (HBO) into a pyridinium derived cyanine. The ESIPT not only enhances the Stokes' shifts but also improves the quantum efficiency of the probe 2 (фfl = 0.27 - 0.40 in DCM). The application of 2 in live cells imaging reveals that compound 2 stains mitochondria in eukaryotic cells, normal human lungs fibroblast (NHLF), Zebrafish's neuromast hair cells, and support cells, and inner plasma membrane in prokaryotic cells, Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Krishna R Ojha
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sabita Pokhrel
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Michael Konopka
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Qin Liu
- Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
14
|
Ren H, Huo F, Shen T, Liu X, Yin C. Molecular-Dimension-Dependent ESIPT Break for Specific Reversible Response to GSH and Its Real-Time Bioimaging. Anal Chem 2021; 93:12801-12807. [PMID: 34498863 DOI: 10.1021/acs.analchem.1c03376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutathione (GSH) plays many important roles in maintaining intracellular redox homeostasis, and determining its real-time levels in the biological system is essential for the diagnosis, treatment, and pathological research of related diseases. Fluorescence imaging has been regarded as a powerful tool for tracking biomarkers in vivo, for which specificity, reversibility, and fast response are the main issues to ensure the real-time effective detection of analytes. The determination of GSH is often interfered with by other active sulfur species. However, in addition to the common features of nucleophilic addition, GSH is unique in its large molecular scale. 2-(2-Hydroxyphenyl) benzothiazole (HBT) was often formed in the ESIPT process. In this study, HBT was installed with α,β-unsaturated ketone conjugated coumarin derivates or nitrobenzene, which were used to adjust the reactivity of α,β-unsaturated ketone. Experimental and theoretical calculations found ESIPT to be favorable in HBT-COU but not HBT-COU-NEt2 or HBT-BEN-NO2 due to the higher electronic energies in the keto form. Thus, for HBT-COU, in the presence of GSH, the hydrogen-bonding interaction between C═N of the HBT unit and carboxyl of GSH would inhibit the process, simultaneously promoting the Michel addition reaction between α,β-unsaturated ketone and GSH. As a consequence, probe HBT-COU could exhibit a rapid reversible ratiometric response to GSH. Small structures of Hcy and Cys are passivated for such reactions. Cell imaging demonstrated the specific response of the probe to GSH, and the probe was successfully used to monitor fluctuations in GSH concentration during cells apoptosis in real-time.
Collapse
Affiliation(s)
- Haixian Ren
- Xinzhou Teachers University, Xinzhou 034000, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Tianruo Shen
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Caixia Yin
- Xinzhou Teachers University, Xinzhou 034000, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
15
|
Li Y, Dahal D, Abeywickrama CS, Pang Y. Progress in Tuning Emission of the Excited-State Intramolecular Proton Transfer (ESIPT)-Based Fluorescent Probes. ACS OMEGA 2021; 6:6547-6553. [PMID: 33748566 PMCID: PMC7970461 DOI: 10.1021/acsomega.0c06252] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 05/31/2023]
Abstract
In this review, we will summarize our recent progress in the design and application of novel organic sensors with emission in the near-infrared region (600-900 nm). By coupling different functional groups with excited-state intramolecular proton transfer (ESIPT) segments, new probes are developed to achieve a large Stokes shift, high sensitivity, and selectivity and to tune the emission toward the near-infrared region. The developed probes exhibit attractive optical properties for bioimaging and environmental science applications. In addition, we further discuss the photophysical properties of ESIPT dyes and how their fluorescence could be affected by structural/environmental factors, which should be considered during the development of robust ESIPT-based fluorescence probes. Their potential applications as imaging reagents are illustrated for intracellular membranes, mitochondria, lysosomes, and some biomolecules.
Collapse
Affiliation(s)
- Yonghao Li
- Department
of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Dipendra Dahal
- Department
of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | | | - Yi Pang
- Department
of Chemistry, University of Akron, Akron, Ohio 44325, United States
- Maurice
Morton Institute of Polymer Science, University
of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Ren H, Huo F, Yin C. Dual modulation sites for a reversible fluorescent probe for GSH over Cys/Hcy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01490k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An abnormal concentration of glutathione (GSH) is a health-associated risk factor, and it is an important signal for diseases such as Parkinson's disease, liver injury and cancer.
Collapse
Affiliation(s)
- Haixian Ren
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
| |
Collapse
|
17
|
Trannoy V, Léaustic A, Gadan S, Guillot R, Allain C, Clavier G, Mazerat S, Geffroy B, Yu P. A highly efficient solution and solid state ESIPT fluorophore and its OLED application. NEW J CHEM 2021. [DOI: 10.1039/d0nj05600f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Readily accessible and functionalized ESIPT dyes with high fluorescence quantum yield in solution, including water, and in crystalline state are presented.
Collapse
Affiliation(s)
- Virgile Trannoy
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Anne Léaustic
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Sophie Gadan
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Régis Guillot
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Clémence Allain
- Université Paris-Saclay
- ENS Paris-Saclay
- CNRS
- PPSM
- 91190 Gif-sur-Yvette
| | - Gilles Clavier
- Université Paris-Saclay
- ENS Paris-Saclay
- CNRS
- PPSM
- 91190 Gif-sur-Yvette
| | - Sandra Mazerat
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | | | - Pei Yu
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| |
Collapse
|
18
|
Cai S, Liu C, Jiao X, He S, Zhao L, Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Org Biomol Chem 2020; 18:1148-1154. [PMID: 31971197 DOI: 10.1039/c9ob02188d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent probes for the detection of acid phosphatases (ACP) are important in the investigation of the pathology and diagnosis of diseases. We reported a lysosome-targeted near-infrared (NIR) fluorescent probe SHCy-P based on a novel NIR-emitting thioxanthene-indolium dye for the detection of ACP. The probe showed a long wavelength fluorescence emission at λem = 765 nm. Due to the ACP-catalyzed cleavage of the phosphate group in SHCy-P, the probe exhibited high selectivity and sensitivity for the 'turn-on' detection of ACP with a limit of detection as low as 0.48 U L-1. The probe SHCy-P could also be used to detect and image endogenous ACP in lysosomes. In light of these prominent properties, we envision that SHCy-P will be an efficient optical imaging approach for investigating the ACP activity in disease diagnosis.
Collapse
Affiliation(s)
- Songtao Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China and Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|