1
|
Singh R, Roopmani P, Hasan U, Dogra P, Giri J. Airbrushed nanofibers with bioactive core and antibacterial shell for wound healing application. Eur J Pharm Biopharm 2024; 195:114169. [PMID: 38159872 DOI: 10.1016/j.ejpb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Acute and chronic wounds are vulnerable to infection and delayed healing and require critical care and advanced wound protection. To overcome the challenges, dual therapy of antibacterial and growth factors will be a novel wound care strategy. The present study explores airbrushed core-shell nanofiber for dual delivery of epidermal growth factor (EGF) and amoxicillin (AMOX) in a sustained manner. A blend of polycaprolactone (PCL)-polyethylene oxide (PEO) was used to prepare the shell compartment for amoxicillin loading and poly-DL-lactide (PDLLA) core for EGF loading by using a customized airbrush setup. Characterization result shows a uniform distribution of nanofibers ranging between 200 and 500 nm in diameter. Amoxicillin loading in the shell compartment offers an initial burst release followed by a sustained release for up to 14 days. Whereas EGF in the core part shows a continuous sustained release throughout the release study.In-vitrostudy indicates the biocompatibility of EGF-AMOX loaded core-shell nanofibers with human dermal fibroblast cell (HDF) cells and a higher cellular proliferation compared to control samples. Gene expression data show an increase in fold change of collagen I and tropoelastin expression, indicating the regenerative properties of EGF-AMOX encapsulated nanofiber. The combination of bioactive core (EGF) and antibiotic shell (amoxicillin) in an airbrushed nanofibrous scaffold is a novel approach, which is the first time explored to deliver sustainable therapy to treat skin wounds. Our results demonstrate that PCL-PEO-Amoxicillin/PDLLA-EGF-loaded core-shell nanofibers are promising dual therapy scaffolds to deliver effective skin wound care, with the possibility of direct deposition on the wound.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Poonam Dogra
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India.
| |
Collapse
|
2
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022; 12:316. [PMID: 36276437 PMCID: PMC9547767 DOI: 10.1007/s13205-022-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Shikha Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
4
|
Bavi EP, Shakerinasab E, Hamidinezhad H, Nazifi E. A green and facile approach for fabrication of biocompatible anti-Parkinson chitosan-gelatin-green tea extract composite particles with neuroprotective and Neurotherapeutic effects: In vitro evaluation. Int J Biol Macromol 2022; 224:1183-1195. [DOI: 10.1016/j.ijbiomac.2022.10.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
5
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
6
|
Singh R, Roopmani P, Chauhan M, Basu SM, Deeksha W, Kazem MD, Hazra S, Rajakumara E, Giri J. Silver sulfadiazine loaded core-shell airbrushed nanofibers for burn wound healing application. Int J Pharm 2021; 613:121358. [PMID: 34896560 DOI: 10.1016/j.ijpharm.2021.121358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/21/2023]
Abstract
Ideal dressing materials for complex and large asymmetric burns should have the dual properties of anti-bacterial and regenerative with advanced applicability of direct deposit on the wound at the patient bedside. In this study, core-shell nanofibers (polycaprolactone; PCL and polyethylene oxide; PEO) with different percent of silver sulfadiazine (SSD) loading (2-10%) were prepared by the airbrushing method using a custom build device. Results indicate a sustained release profile of silver sulfadiazine (SSD) up to 28 days and concentration-dependent anti-bacterial activity. The morphology and proliferation of human dermal fibroblast (HDF) cells and human dental follicle stem cells (HDFSC) on the silver sulfadiazine loaded nanofibers confirm the biocompatibility of airbrushed nanofibers. Moreover, upregulation of extracellular matrix (ECM) proteins (Col I, Col III, and elastin) support the differentiation and regenerative properties of silver sulfadiazine nanofiber mats. This was further confirmed by the complete recovery of rabbit burn wound models within 7 days of silver sulfadiazine loaded nanofiber dressing. Histopathology data show silver sulfadiazine loaded core-shell nanofibers' anti-inflammatory and proliferative activity without any adverse response on the tissue. Overall data display that the airbrushed silver sulfadiazine-loaded core-shell nanofibers are effective dressing material with the possibility of direct fiber deposition on the wound to cover, heal, and regenerate large asymmetric burn wounds.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - M D Kazem
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Sarbani Hazra
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
7
|
Mahalingam S, Bayram C, Gultekinoglu M, Ulubayram K, Homer-Vanniasinkam S, Edirisinghe M. Co-Axial Gyro-Spinning of PCL/PVA/HA Core-Sheath Fibrous Scaffolds for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100177. [PMID: 34310053 DOI: 10.1002/mabi.202100177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Indexed: 11/11/2022]
Abstract
The present study aspires towards fabricating core-sheath fibrous scaffolds by state-of-the-art pressurized gyration for bone tissue engineering applications. The core-sheath fibers comprising dual-phase poly-ε-caprolactone (PCL) core and polyvinyl alcohol (PVA) sheath are fabricated using a novel "co-axial" pressurized gyration method. Hydroxyapatite (HA) nanocrystals are embedded in the sheath of the fabricated scaffolds to improve the performance for application as a bone tissue regeneration material. The diameter of the fabricated fiber is 3.97 ± 1.31 µm for PCL-PVA/3%HA while pure PCL-PVA with no HA loading gives 3.03 ± 0.45 µm. Bead-free fiber morphology is ascertained for all sample groups. The chemistry, water contact angle and swelling behavior measurements of the fabricated core-sheath fibrous scaffolds indicate the suitability of the structures in cellular activities. Saos-2 bone osteosarcoma cells are employed to determine the biocompatibility of the scaffolds, wherein none of the scaffolds possess any cytotoxicity effect, while cell proliferation of 94% is obtained for PCL-PVA/5%HA fibers. The alkaline phosphatase activity results suggest the osteogenic activities on the scaffolds begin earlier than day 7. Overall, adaptations of co-axial pressurized gyration provides the flexibility to embed or encapsulate bioactive substances in core-sheath fiber assemblies and is a promising strategy for bone healing.
Collapse
Affiliation(s)
| | - Cem Bayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, 06800, Turkey
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, 06100, Turkey
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, 06800, Turkey
- Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, 06100, Turkey
| | | | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
8
|
Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:536-561. [PMID: 33175667 DOI: 10.1080/09205063.2020.1849922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue damage related to bone and cartilage is a common clinical disease. Cartilage tissue has no blood vessels and nerves. The limited cell migration ability results in low endogenous healing ability. Due to the complexity of the osteochondral interface, the clinical treatment of osteochondral injury is limited. Tissue engineering provides new ideas for solving this problem. The ideal tissue engineering scaffold must have appropriate porosity, biodegradability and specific functions related to tissue regeneration, especially bioactive polymer nanofiber composite materials with controllable biodegradation rate and appropriate mechanical properties have been getting more and more research. The nanofibers produced by electrospinning have high specific surface area and suitable mechanical properties, which can effectively simulate the natural extracellular matrix (ECM) of bone or cartilage tissue. The composition of materials can affect mechanical properties, plasticity, biocompatibility and degradability of the scaffold, thereby further affect the repair efficiency. This article reviews the characteristics of polymer materials and the application of its electrospun nanofibers in bone, cartilage and osteochondral tissue engineering.
Collapse
Affiliation(s)
- Huixiu Ding
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Xiaolian Niu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
9
|
Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45673-45701. [PMID: 32937068 DOI: 10.1021/acsami.0c12410] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), Cidade Universitária, 58.051-900, João Pessoa, Paraiba, Brazil
| | - Juliano E Oliveira
- Department of Engineering, Federal University of Lavras (UFLA), 37200-900, Lavras, Minas Gerais, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|