1
|
de Assis Ramos MM, Ricardo-da-Silva FY, Macedo LDO, Correia CJ, Moreira LFP, Löbenberg R, Breithaupt-Faloppa AC, Bou-Chacra N. A review on lipid and polymeric nano-based 17-β-estradiol delivery systems: advances and challenges. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13633. [PMID: 39619127 PMCID: PMC11604423 DOI: 10.3389/jpps.2024.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
17β-estradiol (E2) is an endogenous steroid hormone pivotal for the development of female secondary sexual characteristics and the maintenance of the female reproductive system. Its roles extend beyond these physiological functions, as E2 is employed in hormone replacement therapy to alleviate symptoms associated with menopause. Furthermore, E2 exhibits therapeutic potential in the management of osteoporosis, breast cancer, and various neurological and cardiovascular conditions, partly due to its anti-inflammatory effects via modulation of the MAPK/NFκB signaling pathway. Notwithstanding, the hydrophobic nature of E2 significantly hinders the formulation of efficacious delivery systems for its clinical deployment. Recent advances have highlighted nano-based delivery systems for E2 as a promising solution to this solubility challenge. This review critically examines contemporary nano-delivery strategies for E2, particularly emphasizing lipid and polymeric nanoparticle-based systems. These nanostructures are designed to enhance stability, biocompatibility, controlled release, and targeted delivery of E2, yet the selectivity of E2 delivery for therapeutic purposes remains an ongoing challenge. The novelty of this review lies in its focus on the advances in nano-based E2 delivery systems over the past decade, a topic not extensively covered in prior literature. We present a comprehensive analysis of the encapsulation of E2 within polymeric and lipid nanoparticles, underscoring the untapped potential of these strategies. This review identifies a significant research gap, advocating for intensified experimental investigations that could pave the way for the translation of nano-based E2 therapies from bench to bedside.
Collapse
Affiliation(s)
- Mayara Munhoz de Assis Ramos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiza de Oliveira Macedo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano Jesus Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Division of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
3
|
Abuid NJ, Urdaneta ME, Gattas-Asfura KM, Zientek C, Silgo CI, Torres JA, Otto KJ, Stabler CL. Engineering the Multi-Enzymatic Activity of Cerium Oxide Nanoparticle Coatings for the Antioxidant Protection of Implants. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100016. [PMID: 34485991 PMCID: PMC8412420 DOI: 10.1002/anbr.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Imbalance of oxidants is a universal contributor to the failure of implanted devices and tissues. A sustained oxidative environment leads to cytotoxicity, prolonged inflammation, and ultimately host rejection of implanted devices/grafts. The incorporation of antioxidant materials can inhibit this redox/inflammatory cycle and enhance implant efficacy. Cerium oxide nanoparticles (CONP) is a highly promising agent that exhibits potent, ubiquitous, and self-renewable antioxidant properties. Integrating CONP as surface coatings provides ease in translating antioxidant properties to various implants/grafts. Herein, we describe the formation of CONP coatings, generated via the sequential deposition of CONP and alginate, and the impact of coating properties, pH, and polymer molecular weight, on their resulting redox profile. Investigation of CONP deposition, layer formation, and coating uniformity/thickness on their resulting oxidant scavenging activity identified key parameters for customizing global antioxidant properties. Results found lower molecular weight alginates and physiological pH shift CONP activity to a higher H2O2 to O2 --scavenging capability. The antioxidant properties measured for these various coatings translated to distinct antioxidant protection to the underlying encapsulated cells. Information gained from this work can be leveraged to tailor coatings towards specific oxidant-scavenging applications and prolong the function of medical devices and cellular implants.
Collapse
Affiliation(s)
- Nicholas J Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Morgan E Urdaneta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kerim M Gattas-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Caterina Zientek
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cristina Isusi Silgo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Jose A Torres
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| |
Collapse
|
4
|
Redolfi Riva E, Micera S. Progress and challenges of implantable neural interfaces based on nature-derived materials. Bioelectron Med 2021; 7:6. [PMID: 33902750 PMCID: PMC8077843 DOI: 10.1186/s42234-021-00067-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022] Open
Abstract
Neural interfaces are bioelectronic devices capable of stimulating a population of neurons or nerve fascicles and recording electrical signals in a specific area. Despite their success in restoring sensory-motor functions in people with disabilities, their long-term exploitation is still limited by poor biocompatibility, mechanical mismatch between the device and neural tissue and the risk of a chronic inflammatory response upon implantation.In this context, the use of nature-derived materials can help address these issues. Examples of these materials, such as extracellular matrix proteins, peptides, lipids and polysaccharides, have been employed for decades in biomedical science. Their excellent biocompatibility, biodegradability in the absence of toxic compound release, physiochemical properties that are similar to those of human tissues and reduced immunogenicity make them outstanding candidates to improve neural interface biocompatibility and long-term implantation safety. The objective of this review is to highlight progress and challenges concerning the impact of nature-derived materials on neural interface design. The use of these materials as biocompatible coatings and as building blocks of insulation materials for use in implantable neural interfaces is discussed. Moreover, future perspectives are presented to show the increasingly important uses of these materials for neural interface fabrication and their possible use for other applications in the framework of neural engineering.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|