1
|
Bhuckory MB, Wang BY, Chen ZC, Shin A, Pham-Howard D, Shah S, Monkongpitukkul N, Galambos L, Kamins T, Mathieson K, Palanker D. 3D electronic implants in subretinal space: Long-term follow-up in rodents. Biomaterials 2024; 311:122674. [PMID: 38897028 PMCID: PMC11298295 DOI: 10.1016/j.biomaterials.2024.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Clinical results with photovoltaic subretinal prosthesis (PRIMA) demonstrated restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution matching the 100 μm pixel size. Since scaling the pixels below 75 μm in the current bipolar planar geometry will significantly limit the penetration depth of the electric field and increase stimulation threshold, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 32-36 weeks post-implantation in aged rats. With both flat and 3D implants, signals elicited in the visual cortex decreased after the day of implantation by more than 3-fold, and gradually recovered over the next 12-16 weeks. With 25 μm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the retina. Retinal thickness and full-field stimulation threshold with 40 μm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10 ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 μm-wide wells, and stimulation threshold increased over 12-16 weeks, before stabilizing at about 0.08 mW/mm2. Such threshold is still significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.
Collapse
Affiliation(s)
- Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA.
| | - Bing-Yi Wang
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Zhijie C Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA, USA
| | - Davis Pham-Howard
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Sarthak Shah
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Nicharee Monkongpitukkul
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Theodore Kamins
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Keith Mathieson
- Department of Physics, Institute of Photonics, University of Strathclyde, Glasgow, Scotland, UK
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
3
|
Alexander E, Leong KW. Nanodiamonds in biomedical research: Therapeutic applications and beyond. PNAS NEXUS 2024; 3:pgae198. [PMID: 38983694 PMCID: PMC11231952 DOI: 10.1093/pnasnexus/pgae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/06/2024] [Indexed: 07/11/2024]
Abstract
Nanodiamonds (NDs) comprise a family of carbon-based nanomaterials (i.e. diameter <100 nm) with the same sp3 lattice structure that gives natural diamonds their exceptional hardness and electrical insulating properties. Among all carbon nanomaterials-e.g. carbon nanotubes, nanodots, and fullerenes-NDs are of particular interest for biomedical applications because they offer high biocompatibility, stability in vivo, and a dynamic surface chemistry that can be manipulated to perform a seemingly limitless variety of ultra-specific tasks. NDs are already deepening our understanding of basic biological processes, while numerous laboratories continue studying these nanomaterials with an aim of making seismic improvements in the prevention, diagnosis, and treatment of human diseases. This review surveys approximately 2,000 the most recent articles published in the last 5 years and includes references to more than 150 of the most relevant publications on the biomedical applications of NDs. The findings are categorized by contemporary lines of investigation based on potential applications, namely: genetics and gene editing, drug delivery systems, neural interfacing, biomedical sensors, synthetic biology, and organ and tissue regeneration. This review also includes a brief background of NDs and the methods currently developed for their synthesis and preparation. Finally, recommendations for future investigations are offered.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Falahatdoost S, Prawer YDJ, Peng D, Chambers A, Zhan H, Pope L, Stacey A, Ahnood A, Al Hashem HN, De León SE, Garrett DJ, Fox K, Clark MB, Ibbotson MR, Prawer S, Tong W. Control of Neuronal Survival and Development Using Conductive Diamond. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4361-4374. [PMID: 38232177 DOI: 10.1021/acsami.3c14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study demonstrates the control of neuronal survival and development using nitrogen-doped ultrananocrystalline diamond (N-UNCD). We highlight the role of N-UNCD in regulating neuronal activity via near-infrared illumination, demonstrating the generation of stable photocurrents that enhance neuronal survival and neurite outgrowth and foster a more active, synchronized neuronal network. Whole transcriptome RNA sequencing reveals that diamond substrates improve cellular-substrate interaction by upregulating extracellular matrix and gap junction-related genes. Our findings underscore the potential of conductive diamond as a robust and biocompatible platform for noninvasive and effective neural tissue engineering.
Collapse
Affiliation(s)
- Samira Falahatdoost
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yair D J Prawer
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danli Peng
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre Chambers
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hualin Zhan
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Leon Pope
- School of Engineering, STEM College, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Alastair Stacey
- School of Science, STEM College, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Arman Ahnood
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Hassan N Al Hashem
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Sorel E De León
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - David J Garrett
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Kate Fox
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Michael B Clark
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael R Ibbotson
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Bhuckory M, Wang BY, Chen ZC, Shin A, Pham-Howard D, Shah S, Monkongpitukkul N, Galambos L, Kamins T, Mathieson K, Palanker D. 3D electronic implants in subretinal space: long-term follow-up in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550561. [PMID: 37546971 PMCID: PMC10402070 DOI: 10.1101/2023.07.25.550561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Photovoltaic subretinal prosthesis (PRIMA) enables restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution limited by the 100 μm pixel size. Since decreasing the pixel size below 75 μm in the current bipolar geometry is impossible, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 9 months post-implantation in aged rats. With both flat and 3D implants, VEP amplitude decreased after the day of implantation by more than 3-fold, and gradually recovered over about 3 months. With 25 µm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the second-order neurons. Retinal thickness and full-field stimulation threshold with 40 µm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 µm-wide wells, and stimulation threshold increased over 5 months, before stabilizing at about 0.08 mW/mm2. Such threshold is significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.
Collapse
Affiliation(s)
- Mohajeet Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Bing-Yi Wang
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Zhijie Charles Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA, USA
| | - Davis Pham-Howard
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Sarthak Shah
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Nicharee Monkongpitukkul
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Theodore Kamins
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Keith Mathieson
- Department of Physics, Institute of Photonics, University of Strathclyde, Glasgow, Scotland, UK
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Driscoll N, Dong R, Vitale F. Emerging approaches for sensing and modulating neural activity enabled by nanocarbons and carbides. Curr Opin Biotechnol 2021; 72:76-85. [PMID: 34735988 PMCID: PMC8671243 DOI: 10.1016/j.copbio.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Devices that can record or modulate neural activity are essential tools in clinical diagnostics and monitoring, basic research, and consumer electronics. Realizing stable functional interfaces between manmade electronics and biological tissues is a longstanding challenge that requires device and material innovations to meet stringent safety and longevity requirements and to improve functionality. Compared to conventional materials, nanocarbons and carbides offer a number of specific advantages for neuroelectronics that can enable advances in functionality and performance. Here, we review the latest emerging trends in neuroelectronic interfaces based on nanocarbons and carbides, with a specific emphasis on technologies developed for use in vivo. We highlight specific applications where the ability to tune fundamental material properties at the nanoscale enables interfaces that can safely and precisely interact with neural circuits at unprecedented spatial and temporal scales, ranging from single synapses to the whole human body.
Collapse
Affiliation(s)
- Nicolette Driscoll
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, United States; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Royce Dong
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, United States; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Flavia Vitale
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, United States; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
7
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Xu Y, Pang S. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2292-2298. [PMID: 34705653 DOI: 10.1109/tnsre.2021.3123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Retinal prostheses are biomedical devices that directly utilize electrical stimulation to create an artificial vision to help patients with retinal diseases such as retinitis pigmentosa. A major challenge in the microelectrode array (MEA) design for retinal prosthesis is to have a close topographical fit on the retinal surface. The local retinal topography can cause the electrodes in certain areas to have gaps up to several hundred micrometers from the retinal surface, resulting in impaired, or totally lost electrode functions in specific areas of the MEA. In this manuscript, an MEA with dynamically controlled electrode positions was proposed to reduce the electrode-retina distance and eliminate areas with poor contact after implantation. The MEA prototype had a polydimethylsiloxane and polyimide hybrid flexible substrate with gold interconnect lines and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate electrodes. Ring shaped counter electrodes were placed around the main electrodes to measure the distance between the electrode and the model retinal surface in real time. The results showed that this MEA design could reduce electrode-retina distance up to [Formula: see text] with 200 kPa pressure. Meanwhile, the impedance between the main and counter electrodes increased with smaller electrode-model retinal surface distance. Thus, the change of electrode-counter electrode impedance could be used to measure the separation gap and to confirm successful electrode contact without the need of optical coherence tomography scan. The amplitude of the stimulation signal on the model retinal surface with originally poor contact could be significantly improved after pressure was applied to reduce the gap.
Collapse
|
9
|
Abstract
The lifetime of neural implants is strongly dependent on packaging due to the aqueous and biochemically aggressive nature of the body. Over the last decade, there has been a drive towards neuromodulatory implants which are wireless and approaching millimeter-scales with increasing electrode count. A so-far unrealized goal for these new types of devices is an in-vivo lifetime comparable to a sizable fraction of a healthy patient's lifetime (>10-20 years). Existing, approved medical implants commonly encapsulate components in metal enclosures (e.g. titanium) with brazed ceramic inserts for electrode feedthrough. It is unclear how amenable the traditional approach is to the simultaneous goals of miniaturization, increased channel count, and wireless communication. Ceramic materials have also played a significant role in traditional medical implants due to their dielectric properties, corrosion resistance, biocompatibility, and high strength, but are not as commonly used for housing materials due to their brittleness and the difficulty they present in creating complex housing geometries. However, thin-film technology has opened new opportunities for ceramics processing. Thin films derived largely from the semiconductor industry can be deposited and patterned in new ways, have conductivities which can be altered during manufacturing to provide conductors as well as insulators, and can be used to fabricate flexible substrates. In this review, we give an overview of packaging for neural implants, with an emphasis on how ceramic materials have been utilized in medical device packaging, as well as how ceramic thin-film micromachining and processing may be further developed to create truly reliable, miniaturized, neural implants.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, United States of America
| | | |
Collapse
|
10
|
Mani N, Rifai A, Houshyar S, Booth MA, Fox K. Diamond in medical devices and sensors: An overview of diamond surfaces. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nour Mani
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Aaqil Rifai
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Shadi Houshyar
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| | | | - Kate Fox
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
11
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|