1
|
Wang B, Yu S, Huang L. Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2659. [PMID: 37836300 PMCID: PMC10574395 DOI: 10.3390/nano13192659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Cu nanowire (NW)-based transparent conductors are considered to be highly promising constituents of next-generation flexible transparent electronics. However, the fast oxidation of copper under ambient conditions hinders the use of Cu NWs. Herein, we demonstrate a low-cost and scalable approach for preparing a ZnO shell on the surface of Cu NWs under ambient conditions. The covered ZnO shells enhance the oxidative stability of Cu NWs. The optical and electrical properties of ZnO@Cu NWs remain similar to the original performance of the Cu NWs (for example, before encapsulating: 13.5 Ω/sq. at 84.3%, after encapsulating: 19.2 Ω/sq. at 86.7%), which indicates that encapsulation with a ZnO shell enables the preservation of the transparency and conductivity of Cu NW networks. More importantly, the ZnO@Cu NWs exhibit excellent stability in terms of long-term storage, hot/humid environments, and strong oxidizing atmosphere/solution.
Collapse
Affiliation(s)
- Bo Wang
- Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, China;
| | - Shihui Yu
- Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, China;
| | - Liang Huang
- National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
2
|
Lee CKW, Pan Y, Yang R, Kim M, Li MG. Laser-Induced Transfer of Functional Materials. Top Curr Chem (Cham) 2023; 381:18. [PMID: 37212928 DOI: 10.1007/s41061-023-00429-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Patterning is crucial for the large-scale application of functional materials. Laser-induced transfer is an emerging patterning method for additively depositing functional materials to the target acceptor. With the rapid development of laser technologies, this laser printing method emerges as a versatile method to deposit functional materials in either liquid or solid format. The emerging applications such as solar interfacial evaporation, solar cells, light-emitting diodes, sensors, high-output synthesis, and other fields are rising fields benefiting from laser-induced transfer. Following a brief introduction to the principles of laser-induced transfer, this review will comprehensively deliberate this novel additive manufacturing method, including preparing the donor layer and the applications, advantages, and limitations of this technique. Finally, perspectives for handling current and future functional materials using laser-induced transfer will also be discussed. Non-experts in laser technologies can also gain insights into this prevailing laser-induced transfer process, which may inspire their future research.
Collapse
Affiliation(s)
- Connie Kong Wai Lee
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Yexin Pan
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Rongliang Yang
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Minseong Kim
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Mitch Guijun Li
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China.
| |
Collapse
|
3
|
Logotheti A, Levi A, Naveh D, Tsetseris L, Zergioti I. Digital laser-induced printing of MoS 2. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1491-1498. [PMID: 39634601 PMCID: PMC11501406 DOI: 10.1515/nanoph-2022-0736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 12/07/2024]
Abstract
Due to their atomic-scale thickness, handling and processing of two-dimensional (2D) materials often require multistep techniques whose complexity hampers their large-scale integration in modern device applications. Here we demonstrate that the laser-induced forward transfer (LIFT) method can achieve the one-step, nondestructive printing of the prototypical 2D material MoS2. By selecting the optimal LIFT experimental conditions, we were able to transfer arrays of MoS2 pixels from a metal donor substrate to a dielectric receiver substrate. A combination of various characterization techniques has confirmed that the transfer of intact MoS2 monolayers is not only feasible, but it can also happen without incurring significant defect damage during the process. The successful transfer of MoS2 shows the broad potential the LIFT technique has in the emerging field of printed electronics, including printed devices based on 2D materials.
Collapse
Affiliation(s)
- Adamantia Logotheti
- School of Applied Mathematics and Physical Sciences, National Technical University of Athens – Zografou Campus, Zografou, Greece
| | - Adi Levi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Doron Naveh
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Leonidas Tsetseris
- School of Applied Mathematics and Physical Sciences, National Technical University of Athens – Zografou Campus, Zografou, Greece
| | - Ioanna Zergioti
- School of Applied Mathematics and Physical Sciences, National Technical University of Athens – Zografou Campus, Zografou, Greece
| |
Collapse
|
4
|
Georgiou E, Ioakeimidis A, Antoniou I, Papadas IT, Hauser A, Rossier M, Linardi F, Choulis SA. Non-Embedded Silver Nanowires/Antimony-Doped Tin Oxide/Polyethylenimine Transparent Electrode for Non-Fullerene Acceptor ITO-Free Inverted Organic Photovoltaics. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:181-188. [PMID: 36711043 PMCID: PMC9878715 DOI: 10.1021/acsaelm.2c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Indium tin oxide (ITO)-free solution-processed transparent electrodes are an essential component for the low-cost fabrication of organic optoelectronic devices. High-performance silver nanowires (AgNWs) ITO-free inverted organic photovoltaics (OPVs) usually require a AgNWs-embedded process. A simple cost-effective roll-to-roll production process of inverted ITO-free OPVs with AgNWs as a bottom transparent electrode requires solution-based thick metal oxides as carrier-selective contacts. In this reported study, we show that a solution-processed antimony-doped tin oxide (ATO)/polyethylenimine (PEI) electron-selective contact incorporated on the top of non-embedded AgNWs provides a high-performance ITO-free bottom electrode for non-fullerene acceptor (NFA) inverted OPVs.
Collapse
Affiliation(s)
- Efthymios Georgiou
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| | - Apostolos Ioakeimidis
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| | - Ioanna Antoniou
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| | - Ioannis T. Papadas
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
- Department
of Public and Community Health, School of Public Health, University of West Attica, Athens 11521, Greece
| | - Alina Hauser
- Avantama
AG, Laubisruetistr. 50, Staefa 8712, Switzerland
| | | | - Flavio Linardi
- Avantama
AG, Laubisruetistr. 50, Staefa 8712, Switzerland
| | - Stelios A. Choulis
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| |
Collapse
|
5
|
Florian C, Serra P. Printing via Laser-Induced Forward Transfer and the Future of Digital Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:698. [PMID: 36676435 PMCID: PMC9865182 DOI: 10.3390/ma16020698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In the last decades, digital manufacturing has constituted the headline of what is starting to be known as the 'fourth industrial revolution', where the fabrication processes comprise a hybrid of technologies that blur the lines between fundamental sciences, engineering, and even medicine as never seen before. One of the reasons why this mixture is inevitable has to do with the fact that we live in an era that incorporates technology in every single aspect of our daily lives. In the industry, this has translated into fabrication versatility, as follows: design changes on a final product are just one click away, fabrication chains have evolved towards continuous roll-to roll processes, and, most importantly, the overall costs and fabrication speeds are matching and overcoming most of the traditional fabrication methods. Laser-induced forward transfer (LIFT) stands out as a versatile set of fabrication techniques, being the closest approach to an all-in-one additive manufacturing method compatible with virtually any material. In this technique, laser radiation is used to propel the material of interest and deposit it at user-defined locations with high spatial resolution. By selecting the proper laser parameters and considering the interaction of the laser light with the material, it is possible to transfer this technique from robust inorganic materials to fragile biological samples. In this work, we first present a brief introduction on the current developments of the LIFT technique by surveying recent scientific review publications. Then, we provide a general research overview by making an account of the publication and citation numbers of scientific papers on the LIFT technique considering the last three decades. At the same time, we highlight the geographical distribution and main research institutions that contribute to this scientific output. Finally, we present the patent status and commercial forecasts to outline future trends for LIFT in different scientific fields.
Collapse
Affiliation(s)
- Camilo Florian
- Princeton Institute for the Research and Technology of Materials (PRISM), Princeton University, 70 Prospect Av, Princeton, NJ 08540, USA
- Instituto de Óptica Daza de Valdés, Consejo Superior de Investigaciones Científicas (IO-CSIC), Calle Serrano 122, 28006 Madrid, Spain
| | - Pere Serra
- Departament de Fisica Aplicada, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Han M, Meghwal A, Ng SH, Smith D, Mu H, Katkus T, Zhu DM, Mukhlis R, Vongsvivut J, Berndt CC, Ang ASM, Juodkazis S. Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8063. [PMID: 36431546 PMCID: PMC9694738 DOI: 10.3390/ma15228063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The controlled deposition of CoCrFeNiMo0.2 high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into ∼2.4 μm focal spots on the ∼50-nm thick plasma-sputtered films of CoCrFeNiMo0.2. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (10-8 atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo0.2α≈6×105 cm-1 was determined at 600-nm wavelength. The real and imaginary parts of the refractive index (n+iκ) of HEA were determined from reflectance and transmittance by using nanofilms.
Collapse
Affiliation(s)
- Molong Han
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Ashok Meghwal
- Australian Research Council (ARC) Industrial Transformation Training Centre on Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Daniel Smith
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Haoran Mu
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Tomas Katkus
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - De Ming Zhu
- Academic Operations Unit, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Reiza Mukhlis
- Academic Operations Unit, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jitraporn Vongsvivut
- ANSTO-Australian Synchrotron, Infrared Microspectroscopy (IRM) Beamline, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Christopher C. Berndt
- Australian Research Council (ARC) Industrial Transformation Training Centre on Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Andrew S. M. Ang
- Australian Research Council (ARC) Industrial Transformation Training Centre on Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- WRH Program International Research Frontiers Initiative (IRFI) Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|