1
|
Fan X, Chen Q, Zhu F, Wang T, Gao B, Song L, He J. Preparation of Surface Dispersed WO 3/BiVO 4 Heterojunction Arrays and Their Photoelectrochemical Performance for Water Splitting. Molecules 2024; 29:372. [PMID: 38257285 PMCID: PMC10818345 DOI: 10.3390/molecules29020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
In this work, a surface dispersed heterojunction of BiVO4-nanoparticle@WO3-nanoflake was successfully prepared by hydrothermal combined with solvothermal method. We optimized the morphology of the WO3 nanoflakes and BiVO4 nanoparticles by controlling the synthesis conditions to get the uniform BiVO4 loaded on the surface of WO3 arrays. The phase composition and morphology evolution with different reaction precursors were investigated in detail. When used as photoanodes, the WO3/BiVO4 composite exhibits superior activity with photocurrent at 3.53 mA cm-2 for photoelectrochemical (PEC) water oxidation, which is twice that of pure WO3 photoanode. The superior surface dispersion structure of the BiVO4-nanoparticle@WO3-nanoflake heterojunction ensures a large effective heterojunction area and relieves the interfacial hole accumulation at the same time, which contributes to the improved photocurrents together with the stability of the WO3/BiVO4 photoanodes.
Collapse
Affiliation(s)
- Xiaoli Fan
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (X.F.); (Q.C.); (F.Z.)
| | - Qinying Chen
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (X.F.); (Q.C.); (F.Z.)
| | - Fei Zhu
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (X.F.); (Q.C.); (F.Z.)
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| | - Bin Gao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| | - Li Song
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| |
Collapse
|
2
|
Davies K, Allan MG, Nagarajan S, Townsend R, Asokan V, Watson T, Godfrey AR, Maroto-Valer MM, Kuehnel MF, Pitchaimuthu S. Photoelectrocatalytic Surfactant Pollutant Degradation and Simultaneous Green Hydrogen Generation. Ind Eng Chem Res 2023; 62:19084-19094. [PMID: 38020790 PMCID: PMC10655085 DOI: 10.1021/acs.iecr.3c00840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 12/01/2023]
Abstract
For the first time, we demonstrate a photoelectrocatalysis technique for simultaneous surfactant pollutant degradation and green hydrogen generation using mesoporous WO3/BiVO4 photoanode under simulated sunlight irradiation. The materials properties such as morphology, crystallite structure, chemical environment, optical absorbance, and bandgap energy of the WO3/BiVO4 films are examined and discussed. We have tested the anionic type (sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants (benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants. A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min, respectively, by applying 1.75 V applied potential vs RHE to the circuit, under 1 sun was achieved. An interesting competitive phenomenon for photohole utilization was observed between surfactants and adsorbed water. This led to the formation of H2O2 from water alongside surfactant degradation (anode) and hydrogen evolution (cathode). No byproducts were observed after the direct photohole mediated degradation of surfactants, implying its advantage over other AOPs and biological processes. In the cathode compartment, 82.51 μmol/cm2 and 71.81 μmol/cm2 of hydrogen gas were generated during the BAC-C12 and S2NS surfactant degradation process, respectively, at 1.75 V RHE applied potential.
Collapse
Affiliation(s)
| | - Michael G. Allan
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
| | - Sanjay Nagarajan
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Rachel Townsend
- Swansea
University Medical School, Faculty of Medicine, Health and Life Science,
Singleton Park, Swansea University, Swansea SA2 8PP, U.K.
| | - Vijayshankar Asokan
- Environmental
Inorganic Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, S-412 96 Göthenburg, Sweden
| | - Trystan Watson
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA2 8PP, Wales
| | - A. Ruth Godfrey
- Swansea
University Medical School, Faculty of Medicine, Health and Life Science,
Singleton Park, Swansea University, Swansea SA2 8PP, U.K.
| | - M. Mercedes Maroto-Valer
- Research
Centre for Carbon Solutions (RCCS), Institute of Mechanical, Processing
and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Moritz F. Kuehnel
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
- Fraunhofer
Institute for Wind Energy Systems IWES, Am Haupttor 4310, 06237 Leuna, Germany
| | - Sudhagar Pitchaimuthu
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA2 8PP, Wales
- Research
Centre for Carbon Solutions (RCCS), Institute of Mechanical, Processing
and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
3
|
Che R, Zhu Y, Tu B, Miao J, Dong Z, Liu M, Wang Y, Li J, Chen S, Wang F. A Meta-Analysis of Influencing Factors on the Activity of BiVO 4-Based Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2352. [PMID: 37630936 PMCID: PMC10458677 DOI: 10.3390/nano13162352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
With the continuous advancement of global industrialization, a large amount of organic and inorganic pollutants have been discharged into the environment, which is essential for human survival. Consequently, the issue of water environment pollution has become increasingly severe. Photocatalytic technology is widely used to degrade water pollutants due to its strong oxidizing performance and non-polluting characteristics, and BiVO4-based photocatalysts are one of the ideal raw materials for photocatalytic reactions. However, a comprehensive global analysis of the factors influencing the photocatalytic performance of BiVO4-based photocatalysts is currently lacking. Here, we performed a meta-analysis to investigate the differences in specific surface area, kinetic constants, and the pollutant degradation performance of BiVO4-based photocatalysts under different preparation and degradation conditions. It was found that under the loading condition, all the performances of the photocatalysts can be attributed to the single BiVO4 photocatalyst. Moreover, loading could lead to an increase in the specific surface area of the material, thereby providing more adsorption sites for photocatalysis and ultimately enhancing the photocatalytic performance. Overall, the construct heterojunction and loaded nanomaterials exhibit a superior performance for BiVO4-based photocatalysts with 136.4% and 90.1% improvement, respectively. Additionally, within a certain range, the photocatalytic performance increases with the reaction time and temperature.
Collapse
Affiliation(s)
- Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing 210023, China; (R.C.); (Y.Z.); (B.T.); (J.M.); (M.L.)
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541010, China
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; (R.C.); (Y.Z.); (B.T.); (J.M.); (M.L.)
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Biyang Tu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; (R.C.); (Y.Z.); (B.T.); (J.M.); (M.L.)
| | - Jiahe Miao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; (R.C.); (Y.Z.); (B.T.); (J.M.); (M.L.)
| | - Zhongtian Dong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Mengdi Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; (R.C.); (Y.Z.); (B.T.); (J.M.); (M.L.)
| | - Yupeng Wang
- School of Pharmacy, Nanjing Technology University, Nanjing 211816, China;
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; (R.C.); (Y.Z.); (B.T.); (J.M.); (M.L.)
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Shuoping Chen
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541010, China
| | - Fenghe Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China;
| |
Collapse
|
4
|
Ou M, Geng M, Fang X, Shao W, Bai F, Wan S, Ye C, Wu Y, Chen Y. Tailored BiVO 4 Photoanode Hydrophobic Microenvironment Enables Water Oxidative H 2 O 2 Accumulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300169. [PMID: 36999833 DOI: 10.1002/advs.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
Direct photoelectrochemical 2-electron water oxidation to renewable H2 O2 production on an anode increases the value of solar water splitting. BiVO4 has a theoretical thermodynamic activity trend toward highly selective water oxidation H2 O2 formation, but the challenges of competing 4-electron O2 evolution and H2 O2 decomposition reaction need to overcome. The influence of surface microenvironment has never been considered as a possible activity loss factor in the BiVO4 -based system. Herein, it is theoretically and experimentally demonstrated that the situ confined O2 , where coating BiVO4 with hydrophobic polymers, can regulate the thermodynamic activity aiming for water oxidation H2 O2 . Also, the hydrophobicity is responsible for the H2 O2 production and decomposition process kinetically. Therefore, after the addition of hydrophobic polytetrafluoroethylene on BiVO4 surface, it achieves an average Faradaic efficiency (FE) of 81.6% in a wide applied bias region (0.6-2.1 V vs RHE) with the best FE of 85%, which is 4-time higher than BiVO4 photoanode. The accumulated H2 O2 concentration can reach 150 µm at 1.23 V versus RHE under AM 1.5 illumination in 2 h. This concept of modifying the catalyst surface microenvironment via stable polymers provides a new approach to tune the multiple-electrons competitive reactions in aqueous solution.
Collapse
Affiliation(s)
- Man Ou
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| | - Mei Geng
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| | - Xiangle Fang
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| | - Wenfan Shao
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| | - Fenghong Bai
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| | - Shipeng Wan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120749, Republic of Korea
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| | - Yuhui Chen
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu, 211816, P. R. China
| |
Collapse
|
5
|
Xia G, Xiao S, Su J, Zhou H, Liu Y, Zhu X. A dual-functional catalyst: wood-templated BiVO 4-CdS for wood dye wastewater. RSC Adv 2023; 13:1823-1833. [PMID: 36712611 PMCID: PMC9832578 DOI: 10.1039/d2ra06735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
A large quantity of wastewater is released from wood processing, posing a serious pollution problem to the natural environment. Photocatalysis has become a reliable method for effluent purification. In this paper, balsa-templated BiVO4-CdS (BBC) was synthesized by impregnation calcination and chemical deposition using wood residue as a template. Rhodamine B (RhB) is used as a wood colorant and is present in wood processing wastewater. The performance of BBC in photocatalytic degradation with simultaneous hydrogen production was identified using RhB as simulated wood dye wastewater and a sacrificial electron donor. Compared to the BiVO4-CdS without a template, the BBC exhibited higher photocatalytic degradation performance (98.32%), which was attributed to the laminar porous structure of the wood being replicated. Because of the existence of a porous structure, BBC has better adsorption properties, which accelerated photodegradation and the production process of H2. Furthermore, surface modification with CdS nanoparticles formed Z-scheme heterojunctions, which greatly inhibited the photogenerated electron-hole compounds. When RhB provided electrons to BiVO4 and CdS, it was also removed by the oxidation of h+ and ·OH, which were simultaneously generated by balsa-templated BiVO4-CdS. BBC produced hydrogen at a higher rate (61.2 μmol g-1 h-1), realizing dual-functional photocatalysis. Therefore, the results support further development of dual-functional catalysts by the use of wood residues.
Collapse
Affiliation(s)
- Guangda Xia
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Sichen Xiao
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Junjie Su
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Hui Zhou
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Yu Liu
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Xiaodong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| |
Collapse
|
6
|
Wu X, Xu J, Zhu P, Liu M, Duan M, Zhang S. High performance visible light response of a Z-type Bi 2WO 6/BiOBr/RGO heterojunction photocatalyst for the degradation of norfloxacin. Dalton Trans 2022; 51:17994-18009. [PMID: 36367710 DOI: 10.1039/d2dt03038a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A Bi2WO6/BiOBr/RGO (BWO/BOB/RGO) composite photocatalyst with a Z-type heterojunction was prepared by a simple one-pot hydrothermal method, and the micro-morphology and physicochemical properties of the prepared samples were characterized. After reacting under visible light for 120 min, the degradation rate of 20 mg L-1 norfloxacin (NOR) by BWO/BOB/RGO was 95.12%, and the kinetic constant of the reaction was 6.42 times higher than that of pure BiOBr. Furthermore, BWO/BOB/RGO also shows good recycling stability and universality. The characterization results show that the improvement of the photocatalytic performance of the catalyst is mainly due to the heterojunction formed between Bi2WO6, RGO and BiOBr, which enhances the visible light absorption ability, accelerates the photogenerated electron migration and improves the electron-hole pair separation efficiency. The introduction of Bi2WO6 and RGO into the catalyst also increased its specific surface area and made it have more surface-active sites. The results of radical capture experiments showed that ˙O2- and h+ played an important role in the BWO/BOB/RGO reaction system, and the intermediate products and possible degradation pathways of the system were detected and analyzed. Furthermore, the electron transfer mechanism of the Z-type heterojunction using RGO as an electron transport medium and the mechanism of photocatalytic degradation of norfloxacin were proposed.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China. .,Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China.,Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Shasha Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| |
Collapse
|
7
|
Grigioni I, Polo A, Dozzi MV, Stamplecoskie KG, Jara DH, Kamat PV, Selli E. Enhanced Charge Carrier Separation in WO 3/BiVO 4 Photoanodes Achieved via Light Absorption in the BiVO 4 Layer. ACS APPLIED ENERGY MATERIALS 2022; 5:13142-13148. [PMID: 36465258 PMCID: PMC9709765 DOI: 10.1021/acsaem.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO3/BiVO4 heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO4 layer to sensitize WO3 to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO4) or backside (through WO3) irradiating photoanodes with different BiVO4 layer thickness demonstrate that irradiation through BiVO4 is beneficial for charge separation. Optimized electrodes irradiated through BiVO4 show 40% higher photocurrent density compared to backside irradiation.
Collapse
Affiliation(s)
- Ivan Grigioni
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, Milano20133, Italy
| | - Annalisa Polo
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, Milano20133, Italy
| | - Maria Vittoria Dozzi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, Milano20133, Italy
| | | | - Danilo H. Jara
- Facultad
de Ingeniería y Ciencias, Universidad
Adolfo Ibáñez, Avenida Padre Hurtado 750, Viña del
Mar7941169, Chile
| | - Prashant V. Kamat
- Radiation
Laboratory, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Elena Selli
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, Milano20133, Italy
| |
Collapse
|
8
|
Liu C, Zhang Y, Yin G, Shi T, Zhang Y, Chen Z. Fabricating BiVO 4/FeOOH/ZnFe-LDH hierarchical core–shell nanorod arrays for visible-light-driven photoelectrochemical water oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this paper, porous BiVO4 nanorod arrays were encapsulated with FeOOH and ZnFe layered double hydroxide (ZnFe LDH) for the construction of hierarchical structures to achieve excellent transfer and separation of photogenerated electron–hole pairs.
Collapse
Affiliation(s)
- Changhai Liu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Yue Zhang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Ge Yin
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Tiantian Shi
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yue Zhang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| |
Collapse
|