1
|
Pan X, Zhu Y, Liu L, Mu C, Ngai T. Multifunctional polyacrylonitrile-SiO 2/TiO 2 hollow particle nanofibrous membranes with robust ultraviolet resistance and antibacterial effect. Chem Commun (Camb) 2024; 60:11758-11761. [PMID: 39320154 DOI: 10.1039/d4cc03212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Encapsulation of triethoxyoctylsilane-modified SiO2/TiO2 hollow particles (M-HPs) in polyacrylonitrile (PAN) nanofibrous membranes achieves robust ultraviolet (UV) resistance (UPF value of 1529.31) and broad-spectrum antibacterial effects, surpassing the performance of commercial solid TiO2 nanoparticles.
Collapse
Affiliation(s)
- Xiaxi Pan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong, 999077, P. R. China.
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong, 999077, P. R. China.
| | - Liangdong Liu
- O-Spheres Limited, Shatin N. T., Hong Kong, 999077, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong, 999077, P. R. China.
| |
Collapse
|
2
|
Luo T, Farooq A, Weng W, Lu S, Luo G, Zhang H, Li J, Zhou X, Wu X, Huang L, Chen L, Wu H. Progress in the Preparation and Application of Breathable Membranes. Polymers (Basel) 2024; 16:1686. [PMID: 38932036 PMCID: PMC11207707 DOI: 10.3390/polym16121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Breathable membranes with micropores enable the transfer of gas molecules while blocking liquids and solids, and have a wide range of applications in medical, industrial, environmental, and energy fields. Breathability is highly influenced by the nature of a material, pore size, and pore structure. Preparation methods and the incorporation of functional materials are responsible for the variety of physical properties and applications of breathable membranes. In this review, the preparation methods of breathable membranes, including blown film extrusion, cast film extrusion, phase separation, and electrospinning, are discussed. According to the antibacterial, hydrophobic, thermal insulation, conductive, and adsorption properties, the application of breathable membranes in the fields of electronics, medicine, textiles, packaging, energy, and the environment are summarized. Perspectives on the development trends and challenges of breathable membranes are discussed.
Collapse
Affiliation(s)
- Tingshuai Luo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Ambar Farooq
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Wenwei Weng
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Gai Luo
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Hui Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Jianguo Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaxing Zhou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaobiao Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| |
Collapse
|
3
|
Li F, Weng K, Tanaka T, He J, Zheng H, Noda D, Irifune S, Sato H. Fabrication of Waterborne Silicone-Modified Polyurethane Nanofibers for Nonfluorine Elastic Waterproof and Breathable Membranes. Polymers (Basel) 2024; 16:1505. [PMID: 38891452 PMCID: PMC11174452 DOI: 10.3390/polym16111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Waterproof and breathable membranes have a huge market demand in areas, such as textiles and medical protection. However, existing fluorinated nanofibrous membranes, while possessing good waterproof and breathable properties, pose health and environmental hazards. Consequently, fabricating fluorine-free, eco-friendly waterborne membranes by integrating outstanding waterproofing, breathability, and robust mechanical performance remains a significant challenge. Herein, we successfully prepared waterborne silicone-modified polyurethane nanofibrous membranes with excellent elasticity, waterproofing, and breathability properties through waterborne electrospinning, using a small quantity of poly(ethylene oxide) as a template polymer and in situ doping of the poly(carbodiimide) crosslinking agent, followed by a simple hot-pressing treatment. The silicone imparted the nanofibrous membrane with high hydrophobicity, and the crosslinking agent enabled its stable porous structure. The hot-pressing treatment (120 °C) further reduced the pore size and improved the water resistance. This environmentally friendly nanofibrous membrane showed a high elongation at break of 428%, an ultra-high elasticity of 67.5% (160 cycles under 400% tensile strain), an air transmission of 13.2 mm s-1, a water vapor transmission rate of 5476 g m-2 d-1, a hydrostatic pressure of 51.5 kPa, and a static water contact angle of 137.9°. The successful fabrication of these environmentally friendly, highly elastic membranes provides an important reference for applications in healthcare, protective textiles, and water purification.
Collapse
Affiliation(s)
- Fang Li
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi 386-8567, Nagano, Japan; (F.L.); (K.W.)
| | - Kai Weng
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi 386-8567, Nagano, Japan; (F.L.); (K.W.)
| | - Toshihisa Tanaka
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi 386-8567, Nagano, Japan; (F.L.); (K.W.)
| | - Jianxin He
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haimin Zheng
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Daisuke Noda
- Silicone-Electronics Materials Research Center, Shin-Etsu Chemical Co., Ltd., 1-10, Hitomi, Matsuida-Machi, Annaka-shi 379-0224, Gunma, Japan
| | - Shinji Irifune
- Silicone-Electronics Materials Research Center, Shin-Etsu Chemical Co., Ltd., 1-10, Hitomi, Matsuida-Machi, Annaka-shi 379-0224, Gunma, Japan
| | - Hiromasa Sato
- Dainichiseika Color & Chemicals Mfg. Co., Ltd., 2087-4, Ohta, Sakura-shi 285-0808, Chiba, Japan
| |
Collapse
|
4
|
Si Y, Yang J, Wang D, Shi S, Zhi C, Huang K, Hu J. Bioinspired Hierarchical Multi-Protective Membrane for Extreme Environments via Co-Electrospinning-Electrospray Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304705. [PMID: 37653612 DOI: 10.1002/smll.202304705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Extreme environments can cause severe harm to human health, and even threaten life safety. Lightweight, breathable clothing with multi-protective functions would be of great application value. However, integrating multi-protective functions into nanofibers in a facile way remains a great challenge. Here, a one-step co-electrospinning-electrospray strategy is developed to fabricate a superhydrophobic multi-protective membrane (S-MPM). The water contact angle of S-MPM can reach up to 164.3°. More importantly, S-MPM can resist the skin temperature drop (11.2 °C) or increase (17.2 °C) caused by 0 °C cold or 70 °C hot compared with pure electrospun membrane. In the cold climate (-5 °C), the anti-icing time of the S-MPM is extended by 2.52 times, while the deicing time is only 1.45 s due to the great photothermal effect. In a fire disaster situation, the total heat release and peak heat release rate values of flame retarded S-MPM drop sharply by 24.2% and 69.3%, respectively. The S-MPM will serve as the last line of defense for the human body and has the potential to trigger a revolution in the practical application of next-generation functional clothing.
Collapse
Affiliation(s)
- Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jieqiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Dong Wang
- Jiangsu Engineering Research Centre for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, 214122, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
5
|
Xie Y, Tu P, Xiao Y, Li X, Ren M, Cai Z, Xu B. Designing Non-Fluorinated Superhydrophobic Fabrics with Durable Stability and Photocatalytic Functionality. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40011-40021. [PMID: 37552205 DOI: 10.1021/acsami.3c07352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The ability of a superhydrophobic fabric to stay dry and clean has aroused great interest in daily life. Especially, the development of an eco-friendly non-fluorinated water-repellent textile has become a hot topic in recent years. We present a green strategy to achieve self-cleaning textile by in situ deposition of zinc oxide (ZnO) nanoparticles on cotton with subsequent polydimethylsiloxane modification. The prepared cotton fabric exhibits superior water repellency with a water contact angle of 157°. Meanwhile, this superhydrophobic surface can easily be ruined by oil contaminants and then exhibit a decreased water contact angle of 0°. However, the oil-contaminated surface can recover its water repellency after being irradiated. After six cycles of contamination using oleic acid and successive photodegradation, the fabric surface remains superhydrophobic. The obtained superhydrophobic surface does not adversely affect the fabric's strength and air permeability. Therefore, the developed superhydrophobic cotton fabrics have the potential to be used in a variety of industrial scenarios and in daily life.
Collapse
Affiliation(s)
- Yao Xie
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pengpeng Tu
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yonghe Xiao
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaoyan Li
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Mingsheng Ren
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zaisheng Cai
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Bi Xu
- National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
6
|
Chang Y, Liu F. Review of Waterproof Breathable Membranes: Preparation, Performance and Applications in the Textile Field. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5339. [PMID: 37570043 PMCID: PMC10419557 DOI: 10.3390/ma16155339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Waterproof breathable membranes (WBMs) characterized by a specific internal structure, allowing air and water vapor to be transferred from one side to the other while preventing liquid water penetration, have attracted much attention from researchers. WBMs combine lamination and other technologies with textile materials to form waterproof breathable fabrics, which play a key role in outdoor sports clothing, medical clothing, military clothing, etc. Herein, a systematic overview of the recent progress of WBMs is provided, including the principles of waterproofness and breathability, common preparation methods and the applications of WBMs. Discussion starts with the waterproof and breathable mechanisms of two different membranes: hydrophilic non-porous membranes and hydrophobic microporous membranes. Then evaluation criteria and common preparation methods for WBMs are presented. In addition, treatment processes that promote water vapor transmission and prominent applications in the textile field are comprehensively analyzed. Finally, the challenges and future perspectives of WBMs are also explored.
Collapse
Affiliation(s)
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
7
|
Ke L, Yang T, Liang C, Guan X, Li T, Jiao Y, Tang D, Huang D, Li S, Zhang S, He X, Xu H. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378641 DOI: 10.1021/acsami.3c05834] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Poly(lactic acid) (PLA)-based nanofibrous membranes (NFMs) hold great potential in the field of biodegradable filters for air purification but are largely limited by the relatively low electret properties and high susceptibility to bacteria. Herein, we disclosed a facile approach to the fabrication of electroactive and antibacterial PLA NFMs impregnated with a highly dielectric photocatalyst. In particular, the microwave-assisted doping (MAD) protocol was employed to yield Zn-doped titanium dioxide (Zn-TIO), featuring the well-defined anatase phase, a uniform size of ∼65 nm, and decreased band gap (3.0 eV). The incorporation of Zn-TIO (2, 6, and 10 wt %) into PLA gave rise to a significant refinement of the electrospun nanofibers, decreasing from the highest diameter of 581 nm for pure PLA to the lowest value of 264 nm. More importantly, dramatical improvements in the dielectric constants, surface potential, and electret properties were simultaneously achieved for the composite NFMs, as exemplified by a nearly 94% increase in surface potential for 3-day-aged PLA/Zn-TIO (90/10) compared with that of pure PLA. The well regulation of morphological features and promotion of electroactivity contributed to a distinct increase in the air filtration performance, as demonstrated by 98.7% filtration of PM0.3 with the highest quality factor of 0.032 Pa-1 at the airflow velocity of 32 L/min for PLA/Zn-TIO (94/6), largely surpassing pure PLA (89.4%, 0.011 Pa-1). Benefiting from the effective generation of reactive radicals and gradual release of Zn2+ by Zn-TIO, the electroactive PLA NFMs were ready to profoundly inactivate Escherichia coli and Staphylococcus epidermidis. The exceptional combination of remarkable electret properties and excellent antibacterial performance makes the PLA membrane filters promising for healthcare.
Collapse
Affiliation(s)
- Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chenyu Liang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Guan
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yang Jiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
8
|
Zheng G, Cui Y, Jiang Z, Zhou M, Wang P, Yu Y, Wang Q. Multifunctional composite coatings with hydrophobic, UV-resistant, anti-oxidative, and photothermal performance for healthcare. Colloids Surf A Physicochem Eng Asp 2023; 667:131367. [PMID: 37025928 PMCID: PMC10043963 DOI: 10.1016/j.colsurfa.2023.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Personal protective textiles have attracted extensive interest since Corona Virus Disease 2019 has broken out. Moreover, developing eco-friendly, multifunctional waterproof, and breathable surface is of great importance but still faces enormous challenges. Notably, good hydrophobicity and breathability are necessary for protective textiles, especially protective clothing and face masks for healthcare. Herein, the multifunctional composite coatings with good UV-resistant, anti-oxidative, hydrophobic, breathable, and photothermal performance has been rapidly created to meet protective requirements. First, the gallic acid and chitosan polymer was coated onto the cotton fabric surface. Subsequently, the modified silica sol was anchored on the coated cotton fabric surface. The successful fabrication of composite coatings was verified by RGB values obtained from the smartphone and K/S value. The present work is an advance for realizing textile hydrophobicity by utilizing fluorine-free materials, compared with the surface hydrophobicity fabricated with conventional fluorinated materials. The surface free energy has been reduced from 84.2 to27.6 mJ/m2 so that the modified cotton fabric could repel the ethylene glycol, hydrochloric acid, and sodium hydroxide solutions, respectively. Besides, the composite coatings possesses lower adhesion to deionized water. After 70 cycles of the sandpaper abrasion, the fluorine-free hydrophobic coatings still exhibits good hydrophobicity with WCA of 124.6 ± 0.9°, with overcoming the intrinsic drawback of the poor abrasion resistance of hydrophobic surfaces. Briefly, the present work may provide a universal strategy for rapidly creating advanced protective coatings to meet personal healthcare, and a novel method for detecting RGB values of composite coatings by smartphone.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
9
|
Lou Z, Wang L, Yu K, Wei Q, Hussain T, Xia X, Zhou H. Electrospun PVB/AVE NMs as mask filter layer for win-win effects of filtration and antibacterial activity. J Memb Sci 2023; 672:121473. [PMID: 36785656 PMCID: PMC9908571 DOI: 10.1016/j.memsci.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.
Collapse
Key Words
- AVE, apocynum venetum extract
- Air filtration
- Antibacterial properties
- Apocynum venetum extract
- CNF, cellulose nanofibres
- PA, polyamide
- PAN, polyacrylonitrile
- PLA, poly(lactic acid)
- PVB, polyvinyl butyral
- PVB/AVE NMs, polyvinyl butyral/apocynum venetum extract nanofibrous membranes
- PVDF, polyvinylidene fluoride
- Protective masks
- QF, quality factor
- WCA, water contact angle
- Win-win effects
Collapse
Affiliation(s)
- Zhuyushuang Lou
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Ling Wang
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Kefei Yu
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tanveer Hussain
- Textile Processing Department, Faculty of Engineering & Technology, National Textile University, Sheikhupura Road, Faisalabad, 37610, Pakistan
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China,Corresponding author
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China,Corresponding author
| |
Collapse
|
10
|
Zhao J, Zhang T, Li Y, Huang L, Tang Y. Fluorine-Free, Highly Durable Waterproof and Breathable Fibrous Membrane with Self-Clean Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:516. [PMID: 36770477 PMCID: PMC9922014 DOI: 10.3390/nano13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Lightweight, durable waterproof and breathable membranes with multifunctional properties that mimic nature have great potential for application in high-performance textiles, efficient filtering systems and flexible electronic devices. In this work, the fluoride-free triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) fibrous membrane with excellent elastic performance was prepared using electrospinning. According to the bionics of lotus leaves, a coarse structure was built onto the surface of the SBS fiber using dip-coating of silicon dioxide nanoparticles (SiO2 NPs). Polydopamine, an efficient interfacial adhesive, was introduced between the SBS fiber and SiO2 NPs. The hydrophobicity of the modified nanofibrous membrane was highly improved, which exhibited a super-hydrophobic surface with a water contact angle large than 160°. The modified membrane retained super-hydrophobic properties after 50 stretching cycles under 100% strains. Compared with the SBS nanofibrous membrane, the hydrostatic pressure and WVT rate of the SBS/PDA/SiO2 nanofibrous membrane improved simultaneously, which were 84.2 kPa and 6.4 kg·m-2·d-1 with increases of 34.7% and 56.1%, respectively. In addition, the SBS/PDA/SiO2 nanofibrous membrane showed outstanding self-cleaning and windproof characteristics. The high-performance fibrous membrane provides a new solution for personal protective equipment.
Collapse
Affiliation(s)
- Jinchao Zhao
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Teng Zhang
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Youmu Li
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Leping Huang
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Youhong Tang
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
11
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
12
|
Ren G, Li Z, Tian L, Lu D, Jin Y, Zhang Y, Li B, Yu H, He J, Sun D. Environmentally friendly waterproof and breathable electrospun nanofiber membranes via post-heat treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Zhou W, Zhang X, Gong X, Ding M, Yu J, Zhang S, Ding B. Environmentally Friendly Polyamide Nanofiber Membranes with Interconnective Amphiphobic Channels for Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35287-35296. [PMID: 35866994 DOI: 10.1021/acsami.2c12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seawater desalination is a promising and sustainable solution to alleviate freshwater scarcity; however, most existing desalination membranes suffer from poor channel interconnectivity and toxic solvent processing and encounter a tradeoff dilemma of salt rejection and water flux. Herein, we report a unique and facile one-step green solvent/nonsolvent spinning methodology to assemble environmentally friendly polyamide nanofiber membranes with a precisely designed interconnective/stable channel structure and surface anti-wettability for seawater desalination. Direct electrospinning without any post-treatments via in situ introduction of fluorinated chemicals enables highly interconnective amphiphobic channels within polyamide membranes, and the incorporation of nonsolvent (diacetone alcohol) into polyamide/solvent (ethanol) spinning solutions endows the green alcohol-based polyamide membranes with a stable bonding structure and small pore size. The resultant green solvent/nonsolvent-spun polyamide nanofiber membranes show impressive liquid entry pressure (120.5 kPa) and vapor permeation (12.5 kg m-2 d-1), achieving robust seawater desalination performance with a salt rejection of 99.97% and permeate flux of 47.4 kg m-2 h-1. The facile one-step solvent/nonsolvent spinning strategy, highly interconnective amphiphobic channels, and green solvent-based environmental friendliness in this work can open opportunities for future polyamide membranes for practical applications in water purification.
Collapse
Affiliation(s)
- Wen Zhou
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinxin Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Gorji M, Mazinani S, Gharehaghaji AA. A review on emerging developments in thermal and moisture management by membrane‐based clothing systems towards personal comfort. J Appl Polym Sci 2022. [DOI: 10.1002/app.52416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohsen Gorji
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| | | |
Collapse
|
15
|
Jalil M, Ahmed A, Hossain MM, Adak B, Islam MT, Moniruzzaman M, Parvez MS, Shkir M, Mukhopadhyay S. Synthesis of PEDOT:PSS Solution-Processed Electronic Textiles for Enhanced Joule Heating. ACS OMEGA 2022; 7:12716-12723. [PMID: 35474841 PMCID: PMC9026049 DOI: 10.1021/acsomega.1c07148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Textile-based flexible and wearable electronic devices provide an excellent solution to thermal management systems, thermal therapy, and deicing applications through the Joule heating approach. However, challenges persist in designing such cost-effective electronic devices for efficient heating performance. Herein, this study adopted a facile solution-processed strategy, "dip-coating", to develop a high-performance Joule heating device by unformly coating the intrinsically conducting polymer (CP) poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) onto the surface of cotton textiles. The structural and morphological attributes of the cotton/CP mixture were evaluated using various characterization techniques. The electrothermal characteristics of the cotton/CP sample included rapid thermal response, uniform surface temperature distribution up to 94 °C, excellent stability, and endurance in heating performance under various mechanical deformations. The real-time illustration of the fabric heater affixed on a human finger has demonstrated its outstanding potential for thermal therapy applications. The fabricated heater may further expand it purposes toward deicing, defogging, and defrosting applications.
Collapse
Affiliation(s)
- Mohammad
Abdul Jalil
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna 9203, Bangladesh
| | - Abbas Ahmed
- Polymer
Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Md Milon Hossain
- Department
of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Bapan Adak
- Product
Development Department, Kusumgar Corporates
Pvt. Ltd., Vapi, Gujarat 396195, India
| | - M. Tauhidul Islam
- Department
of Materials Science and Engineering, National
Cheng Kung University, Tainan 701, Taiwan (R. O. C.)
| | - Md Moniruzzaman
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna 9203, Bangladesh
| | - Md Sohan Parvez
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna 9203, Bangladesh
| | - Mohd. Shkir
- Advanced
Functional Materials and Optoelectronics Laboratory (AFMOL), Department
of Physics, College of Science, King Khalid
University, Abha, Asir 61413, Saudi Arabia
| | - Samrat Mukhopadhyay
- Department
of Textile and Fiber Engineering, Indian
Institute of Technology, New Delhi, Delhi 110016, India
| |
Collapse
|
16
|
Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, Li RKY, Hu J, Qu J. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107938. [PMID: 34969155 DOI: 10.1002/adma.202107938] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yifan Si
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yanting Han
- West China School of Nursing/West China Hospital Sichuan University Chengdu 610065 China
| | - Ting Wu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| | - Mohammad Irfan Iqbal
- School of Energy and Environment City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Bin Fei
- Institute of Textiles and Clothing The Hong Kong Polytechnic University Kowloon Hong Kong SAR 999077 China
| | - Robert K. Y. Li
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinlian Hu
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinping Qu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| |
Collapse
|
17
|
Li P, Feng Q, Chen L, Zhao J, Lei F, Yu H, Yi N, Gan F, Han S, Wang L, Wang X. Environmentally Friendly, Durably Waterproof, and Highly Breathable Fibrous Fabrics Prepared by One-Step Fluorine-Free Waterborne Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8613-8622. [PMID: 35113511 DOI: 10.1021/acsami.1c23664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Waterproof and breathable membranes (WBMs) have drawn broad attention due to their widespread applications in various scientific and industry fields. However, creating WBMs with environment-friendliness and high performance is still a critical and challenging task. Herein, an environmentally friendly fluorine-free WBM with high performance was prepared through electrospinning and one-step dip-coating technology. The fluorine-free waterborne hydroxyl acrylic resin (HAR) emulsion containing long hydrocarbon chains endowed the electrospun polyacrylonitrile/blocked isocyanate prepolymer (PAN/BIP) fibrous membranes with superior hydrophobicity; meanwhile, crosslinking agent BIP ensured strong chemical binding between hydrocarbon segments and fiber substrate. The as-prepared PAN/BIP@HAR fibrous membranes achieve ideal properties with waterproofness of 112.5 kPa and moisture permeability of 12.7 kg m-2 d-1, which are comparable to the existing high-performance fluorinated WBMs. Besides, the PAN/BIP@HAR membranes also display impressive tensile strength and durability. Significantly, the proposed technology was also applicable to other hydrophilic fiber substrates, such as cellulose acetate and polyamide 6. The successful synthesis of environmentally friendly, durably waterproof, and highly breathable PAN/BIP@HAR membranes not only opens a new avenue to materials design, but also provides promising candidates with tremendous potential in various areas.
Collapse
Affiliation(s)
- Penghui Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Lixia Chen
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fuwang Lei
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shaobo Han
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Lihuan Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xianfeng Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
18
|
Zhang W, Bai J, Zhou C, Yu H, Wang L. Preparation and properties of water-based acrylic emulsion-assisted flexible building tiles. RSC Adv 2022; 12:5340-5348. [PMID: 35425560 PMCID: PMC8981332 DOI: 10.1039/d2ra00045h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
The heavy and rigid appearance of conventional burnt building tiles is not suitable for a global sustainable development strategy. Flexible facing tiles with lightweight and environmental materials are highly desirable for the construction industry today. In this work, water-based polymer emulsion-assisted flexible building tiles were prepared. Based on the method of achieving post crosslinking and improving adhesion with inorganic matrix-based materials, WPAs modified with GMA and KH570 display good chemical resistance and low solvent absorption (0.132 in water and 0.289 in ethanol respectively). The optimum mechanical performance of flexible building materials prepared with WPAs can strain 1.406% and stress 1.8658 MPa. The TGA, XRD, SEM and AFM results further indicate the excellent thermal stability and compatibility of flexible building tiles. Hence, flexible building tiles prepared with WPAs can be promising building materials for construction.
Collapse
Affiliation(s)
- Wu Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 China .,Hubei Three Gorges Laboratory Yichang Hubei 443007 China
| | - Jingchen Bai
- Hubei Yaomei Soft Porcelain Co., Ltd Yichang 443500 China
| | - Changlin Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 China .,Hubei Three Gorges Laboratory Yichang Hubei 443007 China
| | - Hong Yu
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China .,Hubei Three Gorges Laboratory Yichang Hubei 443007 China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 China .,Hubei Three Gorges Laboratory Yichang Hubei 443007 China
| |
Collapse
|
19
|
Yang Y, Guo Z, Li Y, Qing Y, Wang W, Ma Z, You S, Li W. Multifunctional superhydrophobic self-cleaning cotton fabrics with oil-water separation and dye degradation via thiol-ene click reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Strong breathable membrane with excellent self‐cleaning, wave‐transparent, and heat dissipation performances. J Appl Polym Sci 2021. [DOI: 10.1002/app.51338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Zhou W, Gong X, Li Y, Si Y, Zhang S, Yu J, Ding B. Waterborne electrospinning of fluorine-free stretchable nanofiber membranes with waterproof and breathable capabilities for protective textiles. J Colloid Interface Sci 2021; 602:105-114. [PMID: 34118600 DOI: 10.1016/j.jcis.2021.05.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Smart membranes with robust liquid water resistance and water vapor transmission capabilities have attracted growing attentions in personal protective equipment and environmental protection. However, current fluorine-free waterproof and breathable nanofibrous membranes are usually prepared through toxic solvent-based electrospinning, which raises great concerns about their environmental impacts. EXPERIMENTS We develop environmentally friendly fluorine-free polyurethane nanofibrous membranes with robust waterproof and breathable performances via waterborne electrospinning without post-coating treatment. The incorporation of the low surface energy long-chain alkyls and polycarbodiimide crosslinker imparts the interconnective porous channels with high hydrophobicity to waterborne fluorine-free polyurethane nanofibrous membranes. FINDINGS The waterborne fluorine-free nanofibrous membranes show high water contact angle of 137.1°, robust hydrostatic pressure of 35.9 kPa, desirable water vapor transmission rate of 4885 g m-2 d-1, excellent air permeability of 19.9 mm s-1, good tensile elongation of 372.4%, and remarkable elasticity of 56.9%, thus offering strong potential for protective textiles and leaving no toxic solvent residues. This work could also serve as a guide for the design of green and high-performance fibrous materials used for medical hygiene, wearable electronics, water desalination, and oil/water separation.
Collapse
Affiliation(s)
- Wen Zhou
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Xu T, Zhang S, Han S, Qin Y, Liu C, Xi M, Yu X, Li N, Wang Z. Fast Solar-to-Thermal Conversion/Storage Nanofibers for Thermoregulation, Stain-Resistant, and Breathable Fabrics. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shudong Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shuai Han
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Qin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cui Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Min Xi
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xinling Yu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyang Wang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
23
|
Yao Y, Guo Y, Li X, Yu J, Ding B. Asymmetric Wettable, Waterproof, and Breathable Nanofibrous Membranes for Wound Dressings. ACS APPLIED BIO MATERIALS 2021; 4:3287-3293. [PMID: 35014415 DOI: 10.1021/acsabm.0c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the progression in wound treatment, the development of wound dressings with considerable skin regeneration capability and improved patient comfort still faces huge challenges. In this study, a type of asymmetric wettable gradient nanofibrous membrane, which is composed of a hydrophobic polyvinyl butyral (PVB)-polydimethylsiloxane (PDMS) upper layer, a PVB-PDMS/gelatin middle layer, and a hydrophilic gelatin lower layer, has been fabricated. The PVB-PDMS upper layer gave dramatically elevated water contact angles from 71.27° to 125.45° as compared with the gelatin membrane, indicating an asymmetric wettability. The composite membrane exhibited outstanding waterproof capability with a hydrostatic pressure of 58.21 kPa, excellent breathability with a water vapor transmission rate of 8.80 kg m-2 d-1, improved stretchability and tear resistance, and dramatic improvement in mesenchymal stem cell recruitment with the immobilization of stromal-cell-derived factor-1α for accelerating skin regeneration. The development of asymmetric wettable nanofibrous membranes offers insight into wound-dressing design.
Collapse
Affiliation(s)
- Yueming Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuxia Guo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
24
|
Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Zhou W, Yu X, Li Y, Jiao W, Si Y, Yu J, Ding B. Green-Solvent-Processed Fibrous Membranes with Water/Oil/Dust-Resistant and Breathable Performances for Protective Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2081-2090. [PMID: 33351576 DOI: 10.1021/acsami.0c20172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Waterproof and breathable membranes (WBMs) are highly demanded worldwide due to their promising applications in outdoor protective clothing, medical hygiene, and electronic devices. However, the design of such materials integrated with environmental friendliness and high functionality has been considered a long-standing challenge. Herein, we report the green-solvent-processed polyamide fibrous membranes with amphiphobicity and bonding structure via ethanol-based electrospinning and water-based impregnating techniques, endowing the fibrous membranes with outstanding water/oil/dust-resistant and good breathable properties. The developed green smart fibrous membranes exhibit integrated properties with robust water and oil intrusion pressures of 101.2 and 32.4 kPa, respectively, excellent dust removal efficiency of above 99.9%, good water vapor transmission rate of 11.2 kg m-2 d-1, air permeability of 2.6 mm s-1, tensile strength of 15.6 MPa, and strong toughness of 22.8 MJ m-3, enabling the membranes to protect human beings and electronic devices effectively. This work may shed light on designing the next generation green smart fibrous WBMs for protective textiles.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Wenling Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|