1
|
Mohanta M, Jena P. Magnetism of Otherwise Nonmagnetic Elements: From Clusters to Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12286-12295. [PMID: 39081559 PMCID: PMC11284855 DOI: 10.1021/acs.jpcc.4c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Atomic clusters are known to exhibit properties different from their bulk phase. However, when assembled or supported on substrates, clusters often lose their uniqueness. For example, uranium and coinage metals (Cu, Ag, Au) are nonmagnetic in their bulk. Herein, we show that UX6 (X= Cu, Ag, Au) clusters, unlike their nonmagnetic bulk, are not only magnetic but also retain their magnetic character and structure when assembled into a two-dimensional (2D) material. The magnetic moment remains localized at the U site and is found to be 3μB in clusters and about 2μB in the 2D structure. In 2D UX4 (X = Cu, Ag, Au) monolayers, U atoms are found to be coupled antiferromagnetically through an indirect exchange coupling mediated by the coinage metal atoms. Furthermore, hydrogenation of these monolayers can induce a transition from the antiferromagnetic to the ferromagnetic phase. These results, based on density functional theory, have predictive capability and can motivate experiments.
Collapse
Affiliation(s)
- Manish
Kumar Mohanta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Singh YT, Chettri B, Kima L, Renthlei Z, Patra PK, Prasad M, Sivakumar J, Laref A, Ghimire MP, Rai DP. Engineering of Hydrogenated (6,0) Single-Walled Carbon Nanotube under Applied Uniaxial Stress: A DFT-1/2 and Molecular Dynamics Study. ACS OMEGA 2023; 8:6895-6907. [PMID: 36844561 PMCID: PMC9948185 DOI: 10.1021/acsomega.2c07637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Herein, we systematically studied the electronic, optical, and mechanical properties of a hydrogenated (6,0) single-walled carbon nanotube [(6,0) h-SWCNT] under applied uniaxial stress from first-principles density functional theory (DFT) and molecular dynamics (MD) simulation. We have applied the uniaxial stress range from -18 to 22 GPa on the (6,0) h-SWCNT (- sign indicates compressive and + indicates tensile stress) along the tube axes. Our system was found to be an indirect semiconductor (Γ-Δ), with a band gap value of ∼0.77 eV within the linear combination of atomic orbitals (LCAO) method using a GGA-1/2 exchange-correlation approximation. The band gap for (6,0) h-SWCNT significantly varies with the application of stress. The indirect to direct band gap transition was observed under compressive stress (-14 GPa). The strained (6,0) h-SWCNT showed a strong optical absorption in the infrared region. Application of external stress enhanced the optically active region from infrared to Vis with maximum intensity within the Vis-IR region, making it a promising candidate for optoelectronic devices. Ab initio molecular dynamics (AIMD) simulation has been used to study the elastic properties of the (6,0) h-SWCNT which has a strong influence under applied stress.
Collapse
Affiliation(s)
- Yumnam Thakur Singh
- Department
of Physics, North-Eastern Hill University, Shillong, Meghalaya793022, India
| | - Bhanu Chettri
- Department
of Physics, North-Eastern Hill University, Shillong, Meghalaya793022, India
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| | - Lalrin Kima
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| | - Zosiamliana Renthlei
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| | - Prasanta Kumar Patra
- Department
of Physics, North-Eastern Hill University, Shillong, Meghalaya793022, India
| | - Mattipally Prasad
- Department
of Physics, University College of Science, Osmania University, Hyderabad500007, TelanganaIndia
| | - Juluru Sivakumar
- Department
of Physics, University College of Science, Osmania University, Hyderabad500007, TelanganaIndia
| | - Amel Laref
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Madhav Prasad Ghimire
- Central
Department of Physics, Tribhuvan University, Kirtipur, 44613Kathmandu, Nepal
| | - Dibya Prakash Rai
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| |
Collapse
|
3
|
Sha S, Hou Q, Qi M, Zhao C. Effects of Coexistence of Mo and Zn Vacancies with Different Valence States and Interstitial H on the Magneto-optical Properties of ZnO: First-principles calculations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Tao LQ, Zou S, Wang G, Peng Z, Zhu C, Sun H. Theoretical analysis of the absorption of CO 2 and CO on pristine and Al-doped C 3B. Phys Chem Chem Phys 2022; 24:27224-27231. [DOI: 10.1039/d2cp04181b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Real-time detection of CO2 and CO is of great importance because CO2 is a major cause of global warming and CO endangers the human nervous and cardiovascular systems.
Collapse
Affiliation(s)
- Lu-Qi Tao
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Simin Zou
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Guanya Wang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Zhirong Peng
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Congcong Zhu
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Hao Sun
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Zhang F, Qiu J, Guo H, Wu L, Zhu B, Zheng K, Li H, Wang Z, Chen X, Yu J. Theoretical investigations of novel Janus Pb 2SSe monolayer as a potential multifunctional material for piezoelectric, photovoltaic, and thermoelectric applications. NANOSCALE 2021; 13:15611-15623. [PMID: 34596184 DOI: 10.1039/d1nr03440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional Janus nanomaterials, due to their unique electronic, optical, and piezoelectric characteristics resulting from the antisymmetric structures, exhibit great prospects in multifunctional energy application to alleviate the energy crisis. Monolayer Janus Pb2SSe, with a black phosphorus-like structure and an indirect band gap of 1.59 eV as well as high carrier mobility (526-2105 cm2 V-1 s-1), displays outstanding potentials in the energy conversion between nanomechanical energy, solar energy, waste heat, and electricity, which has been comprehensively studied utilizing DFT-based simulations. The research results reveal that monolayer Pb2SSe not only possesses giant in-plane piezoelectricity of d11 = 75.1 pm V-1 but also superhigh out-of-plane piezoelectric coefficients (d31 = 0.5 pm V-1 and d33 = 15.7 pm V-1). Meanwhile, by constructing Pb2SSe bilayers, the out-of-plane piezoelectric coefficients can be significantly enhanced (d31 = 19.2 pm V-1 and d33 = 194.7 pm V-1). In addition, owing to the small conduction band offset, suitable donor band gap and excellent light absorption capability in the Pb2SSe/SnSe (Pb2SSe/GeSe) heterostructure, the power conversion efficiencies were calculated to be up to 20.02% (Pb2SSe/SnSe) and 19.28% (Pb2SSe/GeSe), making it a promising candidate for solar energy collection. Furthermore, from the thermoelectric electron and phonon transport calculations, it can be found that the Pb2SSe monolayer is an n-type thermoelectric material with ultrahigh ZT = 2.19 (1.52) at room temperature, which can be traced back to its ultralow κL = 0.78 (0.99) W m-1 K-1, and superhigh PF = 10.18 (8.25) mW m-1 K-2 along the x(y) direction at the optimal doping concentration at 300 K. The abovementioned versatile characteristics in the Janus Pb2SSe monolayer, along with its comprehensive stabilities (energy, dynamic, thermal, and mechanical stabilities), highlight its potential in clean energy harvesting.
Collapse
Affiliation(s)
- Fusheng Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Jian Qiu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Lingmei Wu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Bao Zhu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Kai Zheng
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Hui Li
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Zeping Wang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Abstract
Wearable electronics are receiving increasing attention with the advances of human society and technologies. Among various types of wearable electronics, electronic fibers/textiles, which integrate the comfort and appearance of conventional fibers/textiles with the functions of electronic devices, are expected to play important roles in remote health monitoring, disease diagnosis/treatment, and human-machine interface. This article aims to review the recent advances in electronic fibers/textiles, thus providing a comprehensive guiding reference for future work. First, we review the selection of functional materials and fabrication strategies of fiber-shaped electronic devices with emphasis on the newly developed functional materials and technologies. Their applications in sensing, light emitting, energy harvest, and energy storage are discussed. Then, the fabrication strategies and applications of electronic textiles are summarized. Furthermore, the integration of multifunctional electronic textiles and their applications are summarized. Finally, we discuss the existing challenges and propose the future development of electronic fibers/textiles.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Corresponding author
| |
Collapse
|
7
|
Mohanta MK, Arora A, De Sarkar A. Conflux of tunable Rashba effect and piezoelectricity in flexible magnesium monochalcogenide monolayers for next-generation spintronic devices. NANOSCALE 2021; 13:8210-8223. [PMID: 33885124 DOI: 10.1039/d1nr00149c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling of piezoelectric properties with Rashba spin-orbit coupling (SOC) has proven to be the limit breaker that paves the way for a self-powered spintronic device (ACS Nano, 2018, 12, 1811-1820). For further advancement in next-generation devices, a new class of buckled, hexagonal magnesium-based chalcogenide monolayers (MgX; X = S, Se, Te) have been predicted which are direct band gap semiconductors satisfying all the stability criteria. The MgTe monolayer shows a strong SOC with a Rashba constant of 0.63 eV Å that is tunable to the extent of ±0.2 eV Å via biaxial strain. Also, owing to its broken inversion symmetry and buckling geometry, MgTe has a very large in-plane as well as out-of-plane piezoelectric coefficient. These results indicate its prospects for serving as a channel semiconducting material in self-powered piezo-spintronic devices. Furthermore, a prototype for a digital logic device can be envisioned using the ac pulsed technology via a perpendicular electric field. Heat transport is significantly suppressed in these monolayers as observed from their intrinsic low lattice thermal conductivity at room temperature: MgS (9.32 W m-1 K-1), MgSe (4.93 W m-1 K-1) and MgTe (2.02 W m-1 K-1). Further studies indicate that these monolayers can be used as photocatalytic materials for the simultaneous production of hydrogen and oxygen on account of having suitable band edge alignment and high charge carrier mobility. This work provides significant theoretical insights into both the fundamental and applied properties of these new buckled MgX monolayers, which are highly suitable for futuristic applications at the nanoscale in low-power, self-powered multifunctional electronic and spintronic devices and solar energy harvesting.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Anu Arora
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| |
Collapse
|
8
|
Mohanta MK, Kishore A, De Sarkar A. Two-dimensional ultrathin van der Waals heterostructures of indium selenide and boron monophosphide for superfast nanoelectronics, excitonic solar cells, and digital data storage devices. NANOTECHNOLOGY 2020; 31:495208. [PMID: 32975227 DOI: 10.1088/1361-6528/abaf20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconducting indium selenide (InSe) monolayers have drawn a great deal of attention among all the chalcogenide two-dimensional materials on account of their high electron mobility; however, they suffer from low hole mobility. This inherent limitation of an InSe monolayer can be overcome by stacking it on top of a boron phosphide (BP) monolayer, where the complementary properties of BP can bring additional benefits. The electronic, optical, and external perturbation-dependent electronic properties of InSe/BP hetero-bilayers have been systematically investigated within density functional theory in anticipation of its cutting-edge applications. The InSe/BP heterostructure has been found to be an indirect semiconductor with an intrinsic type-II band alignment where the conduction band minimum (CBM) and valence band maximum (VBM) are contributed by the InSe and BP monolayers, respectively. Thus, the charge carrier mobility in the heterostructure, which is mainly derived from the BP monolayer, reaches as high as 12 × 103 cm2 V-1 s-1, which is very much desired in superfast nanoelectronics. The suitable bandgap accompanied by a very low conduction band offset between the donor and acceptor along with robust charge carrier mobility, and the mechanical and dynamical stability of the heterostructure attests its high potential for applications in solar energy harvesting and nanoelectronics. The solar to electrical power conversion efficiency (20.6%) predicted in this work surpasses the efficiencies reported for InSe based heterostructures, thereby demonstrating its superiority in solar energy harvesting. Moreover, the heterostructure transits from the semiconducting state (the OFF state) to the metallic state (the ON state) by the application of a small electric field (∼0.15 V Å-1) which is brought about by the actual movement of the bands rather than via the nearly empty free electron gas (NFEG) feature. This thereby testifies to its potential for applications in digital data storage. Moreover, the heterostructure shows strong absorbance over a wide spectrum ranging from UV to the visible light of solar radiation, which will be of great utility in UV-visible light photodetectors.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Amal Kishore
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| |
Collapse
|
9
|
Mohanta MK, De Sarkar A. Interfacial hybridization of Janus MoSSe and BX (X = P, As) monolayers for ultrathin excitonic solar cells, nanopiezotronics and low-power memory devices. NANOSCALE 2020; 12:22645-22657. [PMID: 33155008 DOI: 10.1039/d0nr07000a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we explored the interfacial two-dimensional (2D) physics and significant advancements in the application prospects of MoSSe monolayer when it is combined with a boron pnictide (BP, BAs) monolayer in a van der Waals heterostructure (vdWH) setup. The constructed vdWHs were found to be mechanically and dynamically stable, and they form type-II p-n heterojunctions. Thus, the photogenerated electron-hole pairs are spatially separated. In the BX/MoSSe vdWHs, the BX monolayer serves as excellent donor material for MoSSe, having an ideal donor band gap of ∼1.3 eV. The small value of the conduction band offset (CBO) between the individual monolayers in the vdWHs makes it an excellent candidate for solar energy harvesting in excitonic solar cells, where the power conversion efficiencies were calculated to be 22.97% (BP/MoSSe) and 20.86% (BAs/MoSSe). Also, more than four-fold enhancement in the out-of-plane piezoelectric coefficient (d33) was observed in the MoSSe-based vdWH relative to that in the MoS2-based vdWH owing to the intrinsic built-in vertical electric field in MoSSe. This is consistent with the out-of-plane piezoelectricity brought about by the alteration in symmetry at the metal-semiconductor Schottky junction, which has been observed experimentally [M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, S. P. E and M. Alexe, Nature, 2020, 584, 377-381]. The results obtained in this work provide useful insights into the design of nanomaterials for future applications in nano-optoelectronics, more efficient excitonic solar cells, and nanoelectromechanical systems (NEMS). Furthermore, this work demonstrates outstanding potential for the application of these vdWHs in superfast electronics, including low-power digital data storage and memory devices, where the tunnel current between the source and drain is effectively tunable using a normal electric field of small magnitude serving as the gate voltage.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab - 160062, India.
| | | |
Collapse
|
10
|
Zhu XL, Yang H, Zhou WX, Wang B, Xu N, Xie G. KAgX (X = S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36102-36109. [PMID: 32666784 DOI: 10.1021/acsami.0c08843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer KAgX are a class of novel two-dimensional (2D) layered materials with efficient optical absorption and superior carrier mobility, signifying their potential application prospect in photovoltaic (PV) and thermoelectric (TE) fields. Motivated by the recent theoretical studies on the KAgX monolayer, we carried out systematic investigations on the TE performance of KAgS and KAgSe monolayers, employing density functional theory (DFT) and semiclassical Boltzmann transport equation (BTE). For both KAgSe and KAgS monolayers, large Grüneisen parameters, low group velocities, and short phonon scattering time greatly hinder their heat transport and result in an ultralow thermal conductivity, 0.26 and 0.33 W m-1 K-1 at 300 K, respectively. A twofold degeneracy appearing at the Γ point and the abrupt slope of the density of states (DOS) near the Fermi level give rise to high Seebeck coefficients of KAgX monolayers. Due to the ultralow thermal conductivity and excellent electronic transport performance, the ZT values as high as 4.65 (3.11) and 4.05 (2.63) at 500 (300) K in the n-type doping for KAgSe and KAgS monolayers are obtained. The exceptional performance of KAgX monolayers sheds light on their immense potential applications in the medium-temperature (around 300-500 K) thermoelectric devices and greatly stimulates further experimental synthesis and validation.
Collapse
Affiliation(s)
- Xue-Liang Zhu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengyu Yang
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wu-Xing Zhou
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Baotian Wang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ning Xu
- Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guofeng Xie
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, China
| |
Collapse
|
11
|
Mohanta MK, Rawat A, Jena N, Ahammed R, De Sarkar A. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X =S, Se) monolayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:355301. [PMID: 32340009 DOI: 10.1088/1361-648x/ab8d73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Although CdX (X = S, Se) has been mostly studied in the field of photocatalysis, photovoltaics, their intrinsic properties, such as, mechanical, piezoelectric, electron and phonon transport properties have been completely overlooked in buckled CdX monolayers. Ultra-low lattice thermal conductivity [1.08 W m-1K-1(0.75 W m-1K-1)] and high p-type Seebeck coefficient [1300μV K-1(850μV K-1)] in CdS (CdSe) monolayers have been found in this work based on first-principles DFT coupled to semi-classical Boltzmann transport equations, combining both the electronic and phononic transport. The dimensionless thermoelectric figure of merit is calculated to be 0.78 (0.5) in CdS (CdSe) monolayers at room temperature, which is comparable to that of two-dimensional (2D) tellurene (0.8), arsenene and antimonene (0.8), indicating its great potential for applications in 2D thermoelectrics. Such a low lattice thermal conductivity arise from the participation of both acoustic [91.98% (89.22%)] and optical modes [8.02% (10.78%)] together with low Debye temperature [254 K (187 K)], low group velocity [4 km s-1(3 km s-1)] in CdS (CdSe) monolayers, high anharmonicity and short phonon lifetime. Substantial cohesive energy (∼4-5 eV), dynamical and mechanical stability of the monolayers substantiate the feasibility in synthesizing the single layers in experiments. The inversion symmetry broken along thezdirection causes out-of-plane piezoelectricity. |d33| ∼ 21.6 pm V-1, calculated in CdS monolayer is found to be the highest amongst structures having atomic-layer thickness. Superlow Young's modulus ∼41 N m-1(31 N m-1) in CdS (CdSe) monolayers, which is comparable to that of planar CdS (29 N m-1) and TcTe2(34 N m-1), is an indicator of its superhigh flexibility. Direct semiconducting band gap, high carrier mobility (∼500 cm2V-1s-1) and superhigh flexibility in CdX monolayers signify its gigantic potential for applications in ultrathin, stretchable and flexible nanoelectronics. The all-round properties can be synergistically combined together in futuristic applications in nano-piezotronics as well.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Ashima Rawat
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Nityasagar Jena
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Raihan Ahammed
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| |
Collapse
|
12
|
Mohanta MK, Fathima IS, De Sarkar A. Exceptional mechano-electronic properties in the HfN2 monolayer: a promising candidate in low-power flexible electronics, memory devices and photocatalysis. Phys Chem Chem Phys 2020; 22:21275-21287. [DOI: 10.1039/d0cp02999h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The response of the electronic properties of the HfN2 monolayer to external perturbation such as strain and electric fields has been investigated using density functional theory calculations for its device-based applications and photocatalysis.
Collapse
|