1
|
Payattikul L, Chen CY, Chen YS, Raja Pugalenthi M, Punyawudho K. Recent Advances and Synergistic Effects of Non-Precious Carbon-Based Nanomaterials as ORR Electrocatalysts: A Review. Molecules 2023; 28:7751. [PMID: 38067478 PMCID: PMC10708244 DOI: 10.3390/molecules28237751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2025] Open
Abstract
The use of platinum-free (Pt) cathode electrocatalysts for oxygen reduction reactions (ORRs) has been significantly studied over the past decade, improving slow reaction mechanisms. For many significant energy conversion and storage technologies, including fuel cells and metal-air batteries, the ORR is a crucial process. These have motivated the development of highly active and long-lasting platinum-free electrocatalysts, which cost less than proton exchange membrane fuel cells (PEMFCs). Researchers have identified a novel, non-precious carbon-based electrocatalyst material as the most effective substitute for platinum (Pt) electrocatalysts. Rich sources, outstanding electrical conductivity, adaptable molecular structures, and environmental compatibility are just a few of its benefits. Additionally, the increased surface area and the simplicity of regulating its structure can significantly improve the electrocatalyst's reactive sites and mass transport. Other benefits include the use of heteroatoms and single or multiple metal atoms, which are capable of acting as extremely effective ORR electrocatalysts. The rapid innovations in non-precious carbon-based nanomaterials in the ORR electrocatalyst field are the main topics of this review. As a result, this review provides an overview of the basic ORR reaction and the mechanism of the active sites in non-precious carbon-based electrocatalysts. Further analysis of the development, performance, and evaluation of these systems is provided in more detail. Furthermore, the significance of doping is highlighted and discussed, which shows how researchers can enhance the properties of electrocatalysts. Finally, this review discusses the existing challenges and expectations for the development of highly efficient and inexpensive electrocatalysts that are linked to crucial technologies in this expanding field.
Collapse
Affiliation(s)
- Laksamee Payattikul
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chen-Yu Chen
- Department of Mechanical Engineering, National Central University, Taoyuan 320317, Taiwan;
| | - Yong-Song Chen
- Advanced Institute of Manufacturing with High-Tech Innovations, Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Mariyappan Raja Pugalenthi
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Konlayutt Punyawudho
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Wei Y, Hui Y, Lu X, Liu C, Zhang Y, Fan Y, Chen W. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
3
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Mi J, Zhang G, Zhang Q, Zhao W, Cao Y, Liu F, Jiang L. Defects modulating on MgAl-hydrotalcite nanosheet with improved performance in carbonyl sulfide elimination via a hydroxyl chemical looping route. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Li X, Wang J, Xia J, Fang Y, Hou Y, Fu X, Shalom M, Wang X. One-Pot Synthesis of CoS 2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2022; 15:e202200330. [PMID: 35212173 DOI: 10.1002/cssc.202200330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride (PCN) has attracted intensive interest as sustainable, metal-free semiconductor for photoelectrochemical (PEC) water splitting. Charge transfer along the films acts as the main concern to restrict the performance due to the amorphous nature of polymer. Herein, gradient concentration of cobalt disulfide (CoS2 ) merged in PCN films was realized as CSCN photoanode by a one-pot synthesis. Owing to the unique properties of CoS2 , namely high conductivity, the charge transfer of the CSCN photoanode was promoted, and thus the performance for PEC water oxidation was improved. The optimal photoanode exhibited a photoanodic current of 200 μA cm-2 at 1.23 V versus reversible hydrogen electrode under air mass 1.5 global (AM 1.5G) illumination, which was approximately 4 times that of the pristine PCN photoanode. This work provides a new design of metal-free photoanodes to improve the performance of water splitting.
Collapse
Affiliation(s)
- Xiaochun Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiawei Xia
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
6
|
Engineering cobalt nitride nanosheet arrays with rich nitrogen defects as a bifunctional robust oxygen electrocatalyst in rechargeable Zn-air batteries. J Colloid Interface Sci 2022; 608:2066-2074. [PMID: 34752980 DOI: 10.1016/j.jcis.2021.10.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Developing high-activity bifunctional oxygen electrocatalysts to overcome the sluggish 4e- kinetics is an urgent challenge for rechargeable metal-air batteries. Here, we prepared a CoN nanosheet catalyst with rich nitrogen defects (CoN-Nd) through solvothermal and low-temperature nitridation. Notably, the study finds for the first time that only Co LDH materials can be mostly converted to CoN-Nd under the same nitriding conditions relative to different Co-based precursors. Experiments indicate that the constructed CoN-Nd catalyst exhibits preeminent electrocatalytic activities for both oxygen evolution reaction (η10 = 243 mV) and oxygen reduction reaction (JL = 5.2 mA cm-2). Moreover, the CoN-Nd-based Zinc-air battery showed a large power density of 120 mW cm-2 and robust stability over 260 cycles, superior to the state-of-art Pt/C + RuO2. The superior performance is attributed to a large number of defects formed by the disordered arrangement of local atoms on the catalyst that facilitate the formation of more active sites, and alternate array-like structures thereof improving electrolyte diffusion and gas emission.
Collapse
|
7
|
Luo S, Lv M, Tian Y, Jiang L, Li L, Shi K. Three-dimensional mesoporous ultra-thin monometallic cobalt layered double hydroxides nanomaterials as efficient NO2 gas sensor at room temperature. CrystEngComm 2022. [DOI: 10.1039/d2ce00471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monometallic cobalt layered double hydroxides (Co-LDHs) were synthesized using a simple hydrothermal method. 2-methylimidazole (MIm) was selected as a functional agent. The functionalization and optimization has access to the CCM...
Collapse
|
8
|
Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts 2021. [DOI: 10.3390/catal11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), namely, so-called oxygen electrode reactions, are two fundamental half-cell reactions in the energy storage and conversion devices, e.g., zinc–air batteries and fuel cells. However, the oxygen electrode reactions suffer from sluggish kinetics, large overpotential and complicated reaction paths, and thus require efficient and stable electrocatalysts. Transition-metal-based layered double hydroxides (LDHs) and their derivatives have displayed excellent catalytic performance, suggesting a major contribution to accelerate electrochemical reactions. The rational regulation of electronic structure, defects, and coordination environment of active sites via various functionalized strategies, including tuning the chemical composition, structural architecture, and topotactic transformation process of LDHs precursors, has a great influence on the resulting electrocatalytic behavior. In addition, an in-depth understanding of the structural performance and chemical-composition-performance relationships of LDHs-based electrocatalysts can promote further rational design and optimization of high-performance electrocatalysts. Finally, prospects for the design of efficient and stable LDHs-based materials, for mass-production and large-scale application in practice, are discussed.
Collapse
|
9
|
Filip J, Vinter Š, Čechová E, Sotolářová J. Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst 2021; 146:6394-6415. [PMID: 34596173 DOI: 10.1039/d1an00677k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inorganic selenium, the most common form of harmful selenium in the environment, can be determined using electrochemical sensors, which are compact, fast, reliable and easy-to-operate devices. Despite progress in this area, there is still significant room for developing high-performance selenium electrochemical sensors. To achieve this, one should take into account (i) the electrochemical process that selenium undergoes on the electrode; (ii) the valence state of selenium species in the sample and (iii) modification of the sensor surface by a material with high affinity to selenium. The goal of this review is to provide a knowledge base for these issues. After the Introduction section, mechanisms and principles of the electrochemical reduction of selenium are introduced, followed by a section introducing the modification of electrodes with materials interacting with selenium and a section dedicated to speciation methods, including the reduction of non-detectable Se(VI) to detectable Se(IV). In the following sections, the main types of materials (metallic, polymers, hybrid (nano)materials…) interacting with inorganic selenium (mostly absorbents) are reviewed to show the diversity of properties that may be endowed to sensors if the materials were to be used for the modification of electrodes. These features for the main material categories are outlined in the conclusion section, where it is stated that the engineered polymers may be the most promising modifiers.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Štěpán Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Erika Čechová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Jitka Sotolářová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| |
Collapse
|
10
|
Chen Q, Yang D, Wang Y, Long Y, Fan G. Hollow Hydrangea-Like CoRu/Co Architecture as an Excellent Electrocatalyst for Oxygen Evolution. CHEMSUSCHEM 2021; 14:3959-3966. [PMID: 34323014 DOI: 10.1002/cssc.202101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Developing low-cost but efficient electrocatalysts to promote the sluggish kinetics of oxygen evolution from water splitting is essential for hydrogen production. In this study, a hierarchical hollow hydrangea-like CoRu/Co superstructure is constructed through a self-templating method by morphology-controlled pyrolysis of flower-like Ru-doped Co-based layered double hydroxides (LDH). The anchoring of Ru into Co-LDH is the key to the formation of well-defined hydrangea-like three-dimensional superstructure composed of CoRu/Co. The optimized CoRu/Co-M-350 with a low Ru loading of 3.0 wt% exhibits excellent catalytic performances in the oxygen evolution reaction (OER) with low overpotential (η10 =192 mV) and excellent stability for 100 h at 100 mA cm-2 in alkaline media, outperforming the benchmark RuO2 and most reported electrocatalysts. The superior morphology and structural features of CoRu/Co-M-350 provide not only abundant accessible surface sites but also fast mass and electron transfer, thereby promoting OER catalysis. The present study provides a new synthetic route for preparing highly active OER electrocatalysts.
Collapse
Affiliation(s)
- Qian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Dandan Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| |
Collapse
|
11
|
Wang Y, Li M, Zhou Q, Wang Q, Zhang X, Sun D, Tang Y. Coupling Hierarchical Ultrathin Co Nanosheets With N-Doped Carbon Plate as High-Efficiency Oxygen Evolution Electrocatalysts. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.659865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rational design of cost-effective and highly efficient catalysts for the oxygen evolution reaction (OER) is vastly desirable for advanced renewable energy conversion and storage systems. Tailoring the composition and architecture of electrocatalysts is a reliable approach for improving their catalytic performance. Herein, we developed hierarchical ultra-thin Co nanosheets coupled with N-doped carbon plate (Co-NS@NCP) as an efficient OER catalyst through a feasible and easily scalable NaCl template method. The rapid dissolution-recrystallization-carbonization synthesis process allows Co nanosheets to self-assemble into plenty of secondary building units and to distribute uniformly on N-doped carbon plate. Benefitting from the vertically aligned Co nanosheet arrays and hierarchical architecture, the obtained Co-NS@NCP possess an extremely high specific surface area up to 446.49 m2 g−1, which provides sufficient exposed active sites, excellent structure stability, and multidimensional mass transfer channels. Thus, the Co-NS@NCP affords remarkable electrocatalytic performance for OER in an alkaline medium with a low overpotential of only 278 mV at 10 mA cm−2, a small Tafel slope, as well as robust electrocatalytic stability for long-term electrolysis operation. The present findings here emphasize a rational and promising perspective for designing high-efficiency non-precious electrocatalysts for the OER process and sustainable energy storage and conversion system.
Collapse
|
12
|
Huang X, Shen T, Sun S, Hou Y. Synergistic Modulation of Carbon-Based, Precious-Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6989-7003. [PMID: 33529010 DOI: 10.1021/acsami.0c19922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing alternatives to noble-metal-based catalysts toward the oxygen reduction reaction (ORR) process plays a key role in the application of low-temperature fuel cells. Carbon-based, precious-metal-free electrocatalysts are of great interest due to their low cost, abundant sources, active catalytic performance, and long-term stability. They are also supposed to feature intrinsically high activity and highly dense catalytic sites along with their sufficient exposure, high conductivity, and high chemical stability, as well as effective mass transfer pathways. In this Review, we focus on carbon-based, precious-metal-free nanocatalysts with synergistic modulation of active-site species and their exposure, mass transfer, and charge transport during the electrochemical process. With this knowledge, perspectives on synergistic modulation strategies are proposed to push forward the development of Pt-free ORR catalysts and the wide application of fuel cells.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tong Shen
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shengnan Sun
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Munyemana JC, Chen J, Han Y, Zhang S, Qiu H. A review on optical sensors based on layered double hydroxides nanoplatforms. Mikrochim Acta 2021; 188:80. [PMID: 33576899 DOI: 10.1007/s00604-021-04739-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In recent years, significant efforts have been devoted towards the fabrication and application of layered double hydroxides (LDHs) due to their tremendous features such as excellent biocompatibility with negligible toxicity, large surface area, high conductivity, excellent solubility, and ion exchange properties. Most impressive, LDHs offer a favorable environment to attach several substances such as quantum dots, fluorescein dyes, proteins, and enzymes, which leads to strengthening the catalytic properties or increasing the sensing selectivity and sensitivity of the resulted hybrids. With the extensive ongoing research on the application of nanomaterials, many studies have led to remarkable achievements in exploring LDHs as sensing nanoplatforms. In optical sensors, for instance, many sensing strategies were tailored based on the enzyme-mimicking properties of LDHs, including colorimetric and chemiluminescence procedures. Meanwhile, others were designed based on intercalating some fluorogenic substrates on the LDHs, whereby the sensing signal can be acquired by quenching or enhancing their fluorescence after the addition of analytes. In this review, we aim to summarize the recent advances in optical sensors that use layered double hydroxides as sensing platforms for the determination of various analytes. By outlining some representative examples, we accentuate the change of spectral absorbance, chemiluminescence, and photoluminescence phenomena triggered by the interaction of LDH or functionalized-LDH with the indicators and analytes in the system. And finally, current limitations and possible future orientation in designing further LDHs-based optical sensors are presented. It is hoped that this review will be helpful in assisting the establishment of more improved sensors based on LDHs features. Optical sensors based on layered double hydroxides (LDHs) nanoplatforms were reviewed. The sensing system and detection approaches were rationally reviewed. Possible future orientations were highlighted.
Collapse
Affiliation(s)
- Jean Claude Munyemana
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Chang C, Chen Q, Fan G. Synergetic enhancement of electrochemical H 2O 2 detection in a nitrogen-doped carbon encapsulated FeCo alloy architecture. Analyst 2021; 146:971-978. [PMID: 33285556 DOI: 10.1039/d0an01806f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of Earth-abundant metal-based non-enzymatic electrodes with ultralow metal loadings for the efficient detection of hydrogen peroxide (H2O2) is highly desirable. We report here a remarkable three-dimensional nitrogen-doped porous carbon (NPC) encapsulated Earth-abundant metal architecture, i.e., NPC encapsulating FeCo alloy nanoparticles toward highly efficient electrochemical H2O2 detection. Specifically, an Fe0.06Co0.04@NPC-950 modified electrode can show excellent electrochemical performance for non-enzymatic H2O2 sensing in neutral media, with a wide linear range of 0.004 to 8 mM, a high sensitivity of 794 μA mA-1 cm-2 and a low limit of detection (LOD) of 0.13 μM, outperforming most of the reported non-noble metal electrocatalysts. Meanwhile, the fabricated Fe0.06Co0.04@NPC-950 modified electrode is capable of real-time monitoring of H2O2 in commercial orange juice, milk and serum, revealing its application potential toward the accurate detection of H2O2 in real-sample analysis. This electrode also has high selectivity, long-term stability and good reproducibility. Its excellent performance is correlated with the synergetic catalysis of the FeCo alloy, nitrogen-rich NPC with a large specific surface area (SSA) and the core-shell structure protecting the active sites from corrosion. This study offers an efficient pathway for developing high-performance and Earth-abundant catalysts toward electrochemical H2O2 detection.
Collapse
Affiliation(s)
- Chunlin Chang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | |
Collapse
|
15
|
Meng L, Zhang L, Zhu Y, Jiang H, Kaneti YV, Na J, Yamauchi Y, Golberg D, Jiang H, Li C. Highly dispersed secondary building unit-stabilized binary metal center on a hierarchical porous carbon matrix for enhanced oxygen evolution reaction. NANOSCALE 2021; 13:1213-1219. [PMID: 33404029 DOI: 10.1039/d0nr05941b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Restricting the aggregation and rationally adjusting the electronic structure of binary metal centers in metal-organic framework (MOF) precursors are important for optimizing their performance as electrocatalysts for the oxygen evolution reaction (OER) and achieving low overpotential and high stability in such applications. Herein, we demonstrate the possibility of enhancing the electrochemical activity of MOF-derived binary metal center catalysts by controlling the form of the Fe species. The introduction of Fe-SBU (iron 2,5-dihydroxyterephthalic acid) into ZIF-67 is found to induce a distinct confinement effect and this can be exploited to improve the electroconductivity of binary metal center catalysts, and therefore, to reduce the OER reaction barrier (OOH* → O*). When applied as an OER catalyst in 1 M KOH solution, the Fe-SBU@Co-Matrix catalyst exhibits a low overpotential of 249 mV to reach a current density of 10 mA cm-2 and high stability for over 40 h. This work describes the secondary growth treatment of MOF-derived porous carbons to promote their application as catalysts in energy conversion reactions.
Collapse
Affiliation(s)
- Lu Meng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yin D, Tang J, Bai R, Yin S, Jiang M, Kan Z, Li H, Wang F, Li C. Cobalt Phosphide (Co 2P) with Notable Electrocatalytic Activity Designed for Sensitive and Selective Enzymeless Bioanalysis of Hydrogen Peroxide. NANOSCALE RESEARCH LETTERS 2021; 16:11. [PMID: 33438118 PMCID: PMC7803862 DOI: 10.1186/s11671-020-03469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
In this work, cobalt phosphide nanoparticles (Co2P NPs) were prepared by simple and mild hydrothermal method without the use of harmful phosphorous source. The morphological structure and surface component of Co2P were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy measurements. Considering the excellent electrocatalytic reduction activity and good electrical conductivity of transition-metal phosphide, we fabricated Co2P NPs on indium tin oxide (ITO) substrate (Co2P/ITO) for H2O2 detection. The Co2P/ITO transducer displayed a rapid amperometric response less than 5 s, a broader response range from 0.001 to 10.0 mM and a low detection limit of 0.65 μM. In addition, the non-enzymatic Co2P/ITO sensor showed outstanding selectivity, reproducibility, repeatability and stability, all of which qualified the Co2P/ITO electrode for quite a reliable and promising biosensor for H2O2 sensing.
Collapse
Affiliation(s)
- Donghang Yin
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Junyan Tang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Rongbiao Bai
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Shuyi Yin
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Mengnan Jiang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Zigui Kan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Fei Wang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Caolong Li
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
- Tibetan Medicine Research Institute, Tibetan Traditional Medical College, Lhasa, 850000 Tibet People’s Republic of China
| |
Collapse
|
17
|
Chen Q, Zhou L, Jiang W, Fan G. Oxygenated functional group-engaged electroless deposition of ligand-free silver nanoparticles on porous carbon for efficient electrochemical non-enzymatic H 2O 2 detection. NANOSCALE 2020; 12:24495-24502. [PMID: 33320149 DOI: 10.1039/d0nr07341e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of metal-carbon nanostructures with enhanced performances using traditional methods, such as pyrolysis, photolysis, impregnation-reduction, etc., generally requires additional energy input, reducing agents and capping ligands, which inevitably increase the manufacturing cost and environmental pollution. Herein, a novel one-step substrate-induced electroless deposition (SIED) strategy is developed to synthesize ligand-free Ag NPs supported on porous carbon (PC) (Ag/PC). The PC matrix enriched with oxygenated functional groups has a low work function and thus a low redox potential compared to that of Ag+ ions, which induces the auto-reduction of Ag+ ions to Ag NPs. The as-synthesized Ag/PC-6 modified electrode can be used as an excellent nonenzymatic H2O2 sensor with a broad linear range of 0.001-20 mM, a low detection limit of 0.729 μM (S/N = 3), and a high response sensitivity of 226.9 μA mM-1 cm-2, outperforming most of the reported sensor materials. Moreover, this electrode can be applied to detect trace amounts of H2O2 in juice and milk samples below the permitted residual level in food packaging and the recovery of H2O2 is 99.6% in blood serum (10%) with good reproducibility. This study proposes an efficient approach for synthesizing a highly active supported Ag electrocatalyst, which shows significant potential for practical applications.
Collapse
Affiliation(s)
- Qian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | |
Collapse
|
18
|
Chen Q, Nie Y, Ming M, Fan G, Zhang Y, Hu JS. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63652-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|