1
|
Wang J, Li M, Cai B, Ren H, Fan W, Xu L, Yao J, Wang S, Song J. Matched Electron-Transport Materials Enabling Efficient and Stable Perovskite Quantum-Dot-Based Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202410689. [PMID: 39072910 DOI: 10.1002/anie.202410689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs), abbreviated as P-QLEDs have been regarded as significantly crucial emitters for lighting and displays. Efficient and stable P-QLEDs still lack ideal electron transport materials (ETM), which could efficiently block hole, transport electron, reduce interface non-radiative recombination and possess high thermal stability. Here, we report 2,4,6-Tris(3'-(pyridine-3-yl) biphenyl-3-yl)-1,3,5-triazine (TmPPPyTz, 3P) with strong electron-withdrawing moieties of pyridine and triazine to modulate the performance of P-QLEDs. Compared with commonly used 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), the pyridine in 3P have a strong interaction with perovskites, which can effectively suppress the interface non-radiative recombination caused by the Pb2+ defects on the surface of QDs. In addition, 3P have deep highest occupied molecular orbital (HOMO) (enhancing hole-blocking properties), matched lowest unoccupied molecular orbital (LUMO) and excellent electron mobility (enhancing electron transport properties), realizing the carrier balance and maximizing the exciton recombination. Furthermore, high thermal resistance of 3P obviously improves the stability of QDs under variable temperature, continuous UV illumination, and electric field excitation. Resultantly, the P-QLEDs using the 3P as ETM achieved an outstanding performance with a champion EQE of 30.2 % and an operational lifetime T50 of 3220 hours at an initial luminance of 100 cd m-2, which is 151 % and about 11-fold improvement compared to control devices (EQE=20 %, T50=297 hours), respectively. These results provide a new concept for constructing the efficient and stable P-QLEDs from the perspective of selective ETM.
Collapse
Affiliation(s)
- Jindi Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Mingyang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Bo Cai
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hongdan Ren
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Wenxuan Fan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Shalong Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Liu D, Weng K, Zhao H, Wang S, Qiu H, Luo X, Lu S, Duan L, Bai S, Zhang H, Li J. Nondestructive Direct Optical Patterning of Perovskite Nanocrystals with Carbene-Based Ligand Cross-Linkers. ACS NANO 2024; 18:6896-6907. [PMID: 38376996 DOI: 10.1021/acsnano.3c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microscale patterning of colloidal perovskite nanocrystals (NCs) is essential for their integration in advanced device platforms, such as high-definition displays. However, perovskite NCs usually show degraded optical and/or electrical properties after patterning with existing approaches, posing a critical challenge for their optoelectronic applications. Here we achieve nondestructive, direct optical patterning of perovskite NCs with rationally designed carbene-based cross-linkers and demonstrate their applications in high-performance light-emitting diodes. We reveal that both the photochemical properties and the electronic structures of cross-linkers need to be carefully tailored to the material properties of perovskite NCs. This method produces high-resolution (∼4000 ppi) NC patterns with preserved photoluminescent quantum efficiencies and charge transport properties. Prototype light-emitting diodes with patterned/cross-linked NC layers show a maximum luminance of over 60000 cd m-2 and a peak external quantum efficiency of 16%, among the highest for patterned perovskite electroluminescent devices. Such a material-adapted patterning method enabled by designs from a photochemistry perspective could foster the applications of perovskite NCs in system-level electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Haifeng Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610000, People's Republic of China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiyu Luo
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Lian Duan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sai Bai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610000, People's Republic of China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
3
|
Yang W, He X, Huang X, Wang X, Zhang Y, Gao CH. Defect Passivation in Quasi-2D Perovskite Light-Emitting Diodes by an Ibuprofen Additive. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1628-1637. [PMID: 38130095 DOI: 10.1021/acsami.3c10337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
It is well known that the inferior film morphology and the excessive surface/interface defect states are two obstacles to achieving high electroluminescence performance of quasi-2D perovskite light-emitting diodes (PeLEDs). To solve these problems, ibuprofen was introduced as an additive in the quasi-2D perovskite emitting layer. More efficient photoluminescence is demonstrated. Further, optimized quasi-2D PeLEDs with a current efficiency of 55.93 cd/A are confirmed and 5.7-fold enhancement in device stability is obtained. The physical mechanism of the remarkable improvement is investigated by kinds of measurements. Three aspects should be counted into it. First, the introduction of ibuprofen can passivate defects, thus making the quasi-2D perovskite emitting layer more dense and homogeneous. The reason should be that the C═O functional group and C═C bond in the benzene ring in ibuprofen can coordinate the unsaturated Pb2+ perovskite emitting layer. Meanwhile, the related exciton harvesting process is investigated. The proportion of the crystalline phases (small n and large n phase) can be tuned to benefit the energy funneling process. Finally, the analysis of the current density and voltage curves of the hole-dominated devices and the electron-dominated devices is conducted by utilizing the space charge-limited current (SCLC) methods.
Collapse
Affiliation(s)
- Wei Yang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - XiaoLi He
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - XinMei Huang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - XiaoYu Wang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - Yong Zhang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - Chun-Hong Gao
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduated School of Guangzhou University, Guangzhou 510006, China
- Department of Education of Guangzhou Province, Key Lab of Si-Based Information Materials & Devices and Integrated Circuits Design, Guangzhou 510006, China
| |
Collapse
|
4
|
Lin Y, Chen C, Wang Y, Yu M, Yang J, Ni I, Lin B, Zhidkov IS, Kurmaev EZ, Lu Y, Chueh C. Realizing High Brightness Quasi-2D Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-Off via Multifunctional Interface Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302232. [PMID: 37400366 PMCID: PMC10502845 DOI: 10.1002/advs.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m-2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages.
Collapse
Affiliation(s)
- Yu‐Kuan Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Chiung‐Han Chen
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yen‐Yu Wang
- Research Center for Applied SciencesAcademia SinicaTaipei11529Taiwan
| | - Ming‐Hsuan Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Jing‐Wei Yang
- Research Center for Applied SciencesAcademia SinicaTaipei11529Taiwan
| | - I‐Chih Ni
- Graduate Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipei10617Taiwan
| | - Bi‐Hsuan Lin
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Ivan S. Zhidkov
- Institute of Physics and TechnologyUral Federal UniversityYekaterinburg620002Russia
- M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of SciencesYekaterinburg620108Russia
| | - Ernst Z. Kurmaev
- Institute of Physics and TechnologyUral Federal UniversityYekaterinburg620002Russia
- M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of SciencesYekaterinburg620108Russia
| | - Yu‐Jung Lu
- Research Center for Applied SciencesAcademia SinicaTaipei11529Taiwan
- Department of PhysicsNational Taiwan UniversityTaipei10617Taiwan
| | - Chu‐Chen Chueh
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
- Advanced Research Center for Green Materials Science and TechnologyNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
5
|
Yang R, Zang S, Zhu Q, Xu G, Liu H. Polymerizable Surfactant Ligand for Stabilization and Film Formation of CsPbBr 3 Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15253-15262. [PMID: 36448657 DOI: 10.1021/acs.langmuir.2c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surfactant ligands are important in the synthesis of inorganic perovskite nanocrystals (NCs), not only for stabilizing NCs but also for surface defect passivation. A new polymerizable surfactant ligand with a multidentate l-cysteine head, a long oleoyl tail, and a polymerizable styrenyl group (NOSVC) is designed for the post-synthesis treatment and stabilization of colloidal CsPbBr3 NCs in this work. 1H nuclear magnetic resonance and X-ray photoelectron spectroscopy analysis show that the l-cysteine head has strong interactions with the NCs. The absolute photoluminescence quantum yields of the colloidal NCs are increased from 45.1% of the pristine NCs stabilized with oleic acid/oleyl amine to 91.8% after NOSVC treatment. NOSVC-stabilized CsPbBr3 colloidal NCs show enhanced stabilities when exposed in polar solvents. The NOSVC-stabilized CsPbBr3 NCs in a solid film state allow for a photopolymerization to be carried out with the assistance of a photoinitiator. The polymerized films of NOSVC-treated NCs exhibit significantly enhanced stability against thermal radiation, ultraviolet irradiation, and humidity. We also fabricated self-healing polymer films incorporating NOSVC-treated CsPbBr3 NCs as a green filter for a white light-emitting diode device. The green light-emitting films are very stable in humid environments, revealing the great application potential of NOSVC-treated CsPbBr3 NCs in flexible display and lighting devices.
Collapse
Affiliation(s)
- Renci Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shuoshuo Zang
- Chinese Academy of Sciences (CAS) Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qinyi Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guoqing Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hewen Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
6
|
Ye Z, Xia J, Zhang D, Duan X, Xing Z, Jin G, Cai Y, Xing G, Chen J, Ma D. Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3495. [PMID: 36234623 PMCID: PMC9565347 DOI: 10.3390/nano12193495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Metal halide perovskites have become a research highlight in the optoelectronic field due to their excellent properties. The perovskite light-emitting diodes (PeLEDs) have achieved great improvement in performance in recent years, and the construction of quasi-2D perovskites by incorporating large-size organic cations is an effective strategy for fabricating efficient PeLEDs. Here, we incorporate the fluorine meta-substituted phenethylammonium bromide (m-FPEABr) into CsPbBr3 to prepare quasi-2D perovskite films for efficient PeLEDs, and study the effect of fluorine substitution on regulating the crystallization kinetics and phase distribution of the quasi-2D perovskites. It is found that m-FPEABr allows the transformation of low-n phases to high-n phases during the annealing process, leading to the suppression of n = 1 phase and increasing higher-n phases with improved crystallinity. The rational phase distribution results in the formation of multiple quantum wells (MQWs) in the m-FPEABr based films. The carrier dynamics study reveals that the resultant MQWs enable rapid energy funneling from low-n phases to emission centers. As a result, the green PeLEDs achieve a peak external quantum efficiency of 16.66% at the luminance of 1279 cd m-2. Our study demonstrates that the fluorinated organic cations would provide a facile and effective approach to developing high-performance PeLEDs.
Collapse
Affiliation(s)
- Ziqing Ye
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Dengliang Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xingxing Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zhaohui Xing
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Guangrong Jin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Kong L, Zhang X, Zhang C, Wang L, Wang S, Cao F, Zhao D, Rogach AL, Yang X. Stability of Perovskite Light-Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205217. [PMID: 35921550 DOI: 10.1002/adma.202205217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites combine excellent electronic and optical properties, such as defect tolerance and high photoluminescence efficiency, with the benefits of low-cost, large-area, solution-based processing. Composition- and dimension-tunable properties of perovskites have already been utilized in bright and efficient light-emitting diodes (LEDs). At the same time, there are still great challenges ahead to achieving operational and spectral stability of these devices. In this review, the origins of instability of perovskite materials, and reasons for their degradation in LEDs are considered. Then, strategies for improving the stability of perovskite materials are reviewed, such as compositional engineering, dimensionality control, defect passivation, suitable encapsulation matrices, and fabrication of core/shell perovskite nanocrystals. For improvement of the operational stability of perovskite LEDs, the use of inorganic charge-transport layers, optimization of charge balance, and proper thermal management are considered. The review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on how to reach the goal of stable, bright, and efficient perovskite LEDs.
Collapse
Affiliation(s)
- Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Dewei Zhao
- College of Materials Science and Engineering, Engineering Research Center of Alternative Energy Materials & Devices (MoE), Sichuan University, Chengdu, 610065, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| |
Collapse
|
8
|
Luo Y, Kong L, Wang L, Shi X, Yuan H, Li W, Wang S, Zhang Z, Zhu W, Yang X. A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200498. [PMID: 35419974 DOI: 10.1002/smll.202200498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The electroluminescence performance and long-term stability of perovskite light-emitting diodes (PeLEDs) are greatly affected by the film quality of perovskite emitting layer. Herein, the authors employ an ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIm]OTf), to manipulate the growth of quasi-2D perovskite films by providing heterogeneous nucleation sites. The [BMIm]OTf molecules simultaneously realize uniform perovskite films by reducing the contact angles of precursor solution on the hole transport layer (HTL), and eliminate defect states through bonding [BMIm]+ cations to negatively-charged uncoordinated Br and OTf- anions to uncoordinated Pb2+ defects that effectively suppresses the defect states assisted nonradiative recombination in perovskite films. As a result, the efficiency and the operational lifetime of the resultant PeLED are enhanced by more than twofold and threefold, respectively, achieving a maximum external quantum efficiency of 17.6% and an operational lifetime of over 500 min at an initial brightness of 100 cd m-2 .
Collapse
Affiliation(s)
- Yun Luo
- School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Xingyu Shi
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Hao Yuan
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Wenqiang Li
- School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Zhijun Zhang
- School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Wenqing Zhu
- School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China
| |
Collapse
|
9
|
Li M, Zhao Y, Qin X, Ma Q, Lu J, Lin K, Xu P, Li Y, Feng W, Zhang WH, Wei Z. Conductive Phosphine Oxide Passivator Enables Efficient Perovskite Light-Emitting Diodes. NANO LETTERS 2022; 22:2490-2496. [PMID: 35263112 DOI: 10.1021/acs.nanolett.2c00276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, surface passivation has been proved to be an essential approach for obtaining efficient and stable perovskite light-emitting diodes (Pero-LEDs). Phosphine oxides performed well as passivators in many reports. However, the most commonly used phosphine oxides are insulators, which may inhibit carrier transport between the perovskite emitter and charge-transporter layers, limiting the corresponding device performance. Here, 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), a conductive molecule with two phosphine oxide functional groups, is introduced to modify the perovskite emitting layer. The bifunctional SPPO13 can passivate the nonradiative defects of perovskite and promote electron injection at the interface of perovskite emitter and electron-transporter layers. As a result, the corresponding Pero-LEDs obtain a maximum external quantum efficiency (EQE) of 22.3%. In addition, the Pero-LEDs achieve extremely high brightness with a maximum of around 190 000 cd/m2.
Collapse
Affiliation(s)
- Mingliang Li
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiangqian Qin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qingshan Ma
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kebin Lin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Peng Xu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuqing Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wengjing Feng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wen-Hua Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, China
- School of Materials and Energy, Yunnan University, Kunming 650050, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
10
|
Wei C, Su W, Li J, Xu B, Shan Q, Wu Y, Zhang F, Luo M, Xiang H, Cui Z, Zeng H. A Universal Ternary-Solvent-Ink Strategy toward Efficient Inkjet-Printed Perovskite Quantum Dot Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107798. [PMID: 34990514 DOI: 10.1002/adma.202107798] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Toward next-generation electroluminescent quantum dot (QD) displays, inkjet printing technique has been convinced as one of the most promising low-cost and large-scale manufacturing of patterned quantum dot light-emitting diodes (QLEDs). The development of high-quality and stable QD inks is a key step to push this technology toward practical applications. Herein, a universal ternary-solvent-ink strategy is proposed for the cesium lead halides (CsPbX3 ) perovskite QDs and their corresponding inkjet-printed QLEDs. With this tailor-made ternary halogen-free solvent (naphthene, n-tridecane, and n-nonane) recipe, a highly dispersive and stable CsPbX3 QD ink is obtained, which exhibits much better printability and film-forming ability than that of the binary solvent (naphthene and n-tridecane) system, leading to a much better qualitied perovskite QD thin film. Consequently, a record peak external quantum efficiency (EQE) of 8.54% and maximum luminance of 43 883.39 cd m-2 is achieved in inkjet-printed green perovskite QLEDs, which is much higher than that of the binary-solvent-system-based devices (EQE = 2.26%). Moreover, the ternary-solvent-system exhibits a universal applicability in the inkjet-printed red and blue perovskite QLEDs as well as cadmium (Cd)-based QLEDs. This work demonstrates a new strategy for tailor-making a general ternary-solvent-QD-ink system for efficient inkjet-printed QLEDs as well as the other solution-processed electronic devices in the future.
Collapse
Affiliation(s)
- Changting Wei
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiantong Li
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Kista, SE-16440, Sweden
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengjuan Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Manman Luo
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng Cui
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
11
|
Chen J, Xiang H, Wang J, Wang R, Li Y, Shan Q, Xu X, Dong Y, Wei C, Zeng H. Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS NANO 2021; 15:17150-17174. [PMID: 34758267 DOI: 10.1021/acsnano.1c06849] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As global warming, energy shortages, and environment pollution have intensified, low-carbon and energy-saving lighting technology has attracted great attention worldwide. Light emitting diodes (LEDs) have been around for decades and are considered to be the most ideal lighting technology currently due to their high luminescence efficiency (LE) and long lifespan. Besides, along with the development of modern technology, lighting technologies with higher performance and more functions are desired. Perovskite based LEDs (PeLEDs) have recently emerged as ideal candidates for lighting technology owing to the extraordinary photoelectric properties of perovskite, such as high photoluminescence quantum yields (PLQYs), easy wavelength tuning, and low-cost synthesis. Herein, we open this review by introducing the background of white LEDs (WLEDs), including their light-emitting mechanism, typical characteristics, and key indicators in applications. Then, four main approaches to fabricate WLEDs are discussed and compared. After that, in accordance with the four categories, we focus on the recent progress of white PeLEDs (Pe-WLEDs), followed by the challenges and opportunities for Pe-WLEDs in practical application. Meanwhile, some pertinent countermeasures to their challenges are put forward. Finally, the development promise of Pe-WLEDs is explored.
Collapse
Affiliation(s)
- Jiawei Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jian Wang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, United States
| | - Run Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobao Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhui Dong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changting Wei
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
12
|
Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip HL, Hou L, Qi Z, Su SJ. Perovskite Light-Emitting Diodes with EQE Exceeding 28% through a Synergetic Dual-Additive Strategy for Defect Passivation and Nanostructure Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103268. [PMID: 34545631 DOI: 10.1002/adma.202103268] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Quasi-2D perovskites have long been considered to have favorable "energy funnel/cascade" structures and excellent optical properties compared with their 3D counterparts. However, most quasi-2D perovskite light-emitting diodes (PeLEDs) exhibit high external quantum efficiency (EQE) but unsatisfactory operating stability due to Auger recombination induced by high current density. Herein, a synergetic dual-additive strategy is adopted to prepare perovskite films with low defect density and high environmental stability by using 18-crown-6 and poly(ethylene glycol) methyl ether acrylate (MPEG-MAA) as the additives. The dual additives containing COC bonds can not only effectively reduce the perovskite defects but also destroy the self-aggregation of organic ligands, inducing the formation of perovskite nanocrystals with quasi-core/shell structure. After thermal annealing, the MPEG-MAA with its CC bond can be polymerized to obtain a comb-like polymer, further protecting the passivated perovskite nanocrystals against water and oxygen. Finally, state-of-the-art green PeLEDs with a normal EQE of 25.2% and a maximum EQE of 28.1% are achieved, and the operating lifetime (T50 ) of the device in air environment is over ten times increased, providing a novel and effective strategy to make high efficiency and long operating lifetime PeLEDs.
Collapse
Affiliation(s)
- Zhe Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weidong Qiu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaomei Peng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guanwei Sun
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xinyan Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chenyang Shen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qing Gu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fulong Ma
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
13
|
Gao L, Li X, Traoré B, Zhang Y, Fang J, Han Y, Even J, Katan C, Zhao K, Liu S, Kanatzidis MG. m-Phenylenediammonium as a New Spacer for Dion-Jacobson Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:12063-12073. [PMID: 34342223 DOI: 10.1021/jacs.1c03687] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two-dimensional (2D) halide perovskites have several distinct structural classes and exhibit great tunability, stability, and high potential for photovoltaic applications. Here, we report a new series of hybrid 2D perovskites in the Dion-Jacobson (DJ) class based on aromatic m-phenylenediammonium (mPDA) dications. The crystal structures of the DJ perovskite materials (mPDA)MAn-1PbnI3n+1 (n = 1-3) were solved and refined using single-crystal X-ray crystallography. The results indicate a short I···I interlayer distance of 4.00-4.04 Å for the (mPDA)MAn-1PbnI3n+1 (n = 2 and 3) structures, which is the shortest among DJ perovskites. However, Pb-I-Pb angles are as small as 158-160°, reflecting the large distortion of the inorganic framework, which results in larger band gaps for these materials than those in other DJ analogues. Density functional theory calculations suggest appreciable dispersion in the stacking direction, unlike the band structures of the Ruddlesden-Popper phases, which exhibit flat bands along the stacking direction. This is a consequence of the short interlayer I···I distances that can lead to interlayer electronic coupling across the layers. The solution-deposited films (nominal (mPDA)MAn-1PbnI3n+1 compositions of n = 1-6) reveal improved surface coverage with increasing nominal n value with the higher n films being composed of a mixture of n = 1 and bulk three-dimensional MAPbI3 perovskites. The films made from solutions of these materials behave differently from those of other 2D iodide perovskites, and their solar cells have a mixture of n = 1 DJ and MAPbI3 as light-absorbing semiconductors.
Collapse
Affiliation(s)
- Lili Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaotong Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Boubacar Traoré
- University of Rennes, ENSCR, INSA Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Rennes F-35000, France
| | - Yalan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Junjie Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jacky Even
- University of Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes F-35000, France
| | - Claudine Katan
- University of Rennes, ENSCR, INSA Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Rennes F-35000, France
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.,Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Ren M, Cao S, Zhao J, Zou B, Zeng R. Advances and Challenges in Two-Dimensional Organic-Inorganic Hybrid Perovskites Toward High-Performance Light-Emitting Diodes. NANO-MICRO LETTERS 2021; 13:163. [PMID: 34341878 PMCID: PMC8329153 DOI: 10.1007/s40820-021-00685-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) perovskites are known as one of the most promising luminescent materials due to their structural diversity and outstanding optoelectronic properties. Compared with 3D perovskites, 2D perovskites have natural quantum well structures, large exciton binding energy (Eb) and outstanding thermal stability, which shows great potential in the next-generation displays and solid-state lighting. In this review, the fundamental structure, photophysical and electrical properties of 2D perovskite films were illustrated systematically. Based on the advantages of 2D perovskites, such as special energy funnel process, ultra-fast energy transfer, dense film and low efficiency roll-off, the remarkable achievements of 2D perovskite light-emitting diodes (PeLEDs) are summarized, and exciting challenges of 2D perovskite are also discussed. An outlook on further improving the efficiency of pure-blue PeLEDs, enhancing the operational stability of PeLEDs and reducing the toxicity to push this field forward was also provided. This review provides an overview of the recent developments of 2D perovskite materials and LED applications, and outlining challenges for achieving the high-performance devices.
Collapse
Affiliation(s)
- Miao Ren
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
15
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
16
|
Li A, Liu Q, Chu W, Liang W, Prezhdo OV. Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16567-16575. [PMID: 33793206 DOI: 10.1021/acsami.1c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Much effort has been dedicated to boost the development of lead-free perovskite solar cells. However, their performance and stability are still much less competitive to the lead-bearing counterparts. By exploiting a mixed Sn-Ge cation strategy for the development of lead-free perovskites, we perform ab initio electronic structure calculations and quantum dynamics simulations on MASn0.5Ge0.5I3 and compare them to MASnI3. The calculations demonstrate that the hybrid cation strategy can improve simultaneously the perovskite stability and the lifetime of charge carriers. The stability increases due to a larger space of possible structures within the favorable range of the structural parameters, such as the Goldschmidt tolerance and octahedron factors. By exploring the larger structure space, mixed perovskites find stable configurations with lower free energies and better fitting components that exhibit reduced fluctuations around the equilibrium geometries. Charge carriers live longer in mixed perovskites because cation mixing results in an additional and moderate disorder that separates electrons and holes, reducing their interactions while still maintaining efficient band-like charge transport. These general and fundamental principles established by the analysis of the simulation results are useful for the design of advanced materials for solar energy and construction of optoelectronic devices.
Collapse
Affiliation(s)
- Akang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Qi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - WeiBin Chu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Zeng Q, Du Y, Jiang J, Yu Q, Li Y. Revealing the Aging Effect of Metal-Oleate Precursors on the Preparation of Highly Luminescent CsPbBr 3 Nanoplatelets. J Phys Chem Lett 2021; 12:2668-2675. [PMID: 33689369 DOI: 10.1021/acs.jpclett.1c00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the ultrafast crystallization process in the triple-source ligand-assisted reprecipitation (TSLARP) technique the [LyPbBrx] octahedra is easily distorted, resulting in anisotropic two-dimensional nanoplatelets (NPLs) with low photoluminescence quantum yield (PLQY) and poor stability. Unexpectedly, we obtain CsPbBr3 NPLs with PLQY approaching unity and high stability using the TSLARP technique through aging the metal-oleate precursors. We find that the significant enhancement of the PLQY is related to the change of solution chemistry of the Pb-oleate precursor in the aging process. While hybrid CsPbBr3@Cs4PbBr6 NPLs with low PLQY (28%) are formed with fresh Pb-oleate precursor, phase-pure CsPbBr3 NPLs with PLQY of 97.4% are obtained with the aged Pb-oleate precursor. A model that takes into account the transformation of the Pb-oleate in toluene from isolated molecules into clusters after aging is proposed to explain the phenomenon. Our finding highlights the importance of understanding the solution chemistry for the synthesis of the highly luminescent NPLs and provides a new way to break the "blue-wall" in perovskite light-emitting devices.
Collapse
Affiliation(s)
- Qiugui Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiying Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiexuan Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
18
|
Fang T, Wang T, Li X, Dong Y, Bai S, Song J. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci Bull (Beijing) 2021; 66:36-43. [PMID: 36654311 DOI: 10.1016/j.scib.2020.08.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/06/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023]
Abstract
Perovskite quantum-dot-based light-emitting diodes (QLEDs) are highly promising for future solid-state lightings and high-definition displays due to their excellent color purity. However, their device performance is easily affected by charge accumulation induced luminescence quenching due to imbalanced charge injection in the devices. Here we report green perovskite QLEDs with simultaneously improved efficiency and operational lifetime through balancing the charge injection with the employment of a bilayered electron transport structure. The charge-balanced QLEDs exhibit a color-saturated green emission with a full-width at half-maximum (FWHM) of 18 nm and a peak at 520 nm, a low turn-on voltage of 2.0 V and a champion external quantum efficiency (EQE) of 21.63%, representing one of the most efficient perovskite QLEDs so far. In addition, the devices with modulated charge balance demonstrate a nearly 20-fold improvement in the operational lifetime compared to the control device. Our results demonstrate the great potential of further improving the device performance of perovskite QLEDs toward practical applications in lightings and displays via rational device engineering.
Collapse
Affiliation(s)
- Tao Fang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing 210094, China
| | - Tiantian Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing 210094, China
| | - Xiansheng Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing 210094, China
| | - Yuhui Dong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing 210094, China
| | - Sai Bai
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jizhong Song
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing 210094, China.
| |
Collapse
|