1
|
Pan B, Shan S, Wang J, Tang Q, Guo L, Jin T, Wang Q, Li Z, Usman M, Chen F. Nickel -supported PdM (M = Au and Ag) nanodendrites as formate oxidation (electro)catalytic anodes for direct fuel cells and hydrogen generation at room temperature. NANOSCALE 2023; 15:7032-7043. [PMID: 36974475 DOI: 10.1039/d2nr06637h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The study provides a proof of concept for the first time that unique palladium-gold (PdAu) and palladium-silver (PdAg) nanodendrites are bifunctional catalytic active sites for formate oxidation reactions (FORs) and formate dehydrogenation reactions (FDRs). The unique nanodendritic structure was developed via a simple galvanic displacement reaction for the direct growth of PdAu and PdAg nanodendrites on a nickel foam (PdAu/NiNF and PdAg/NiNF). These PdAu/NiNF and PdAg/NiNF electrodes exhibited 2.32 and 1.59 times higher specific activity than that of the commercial Pd/C electrode and promising stability toward FORs. Moreover, the PdAu/NiNF and PdAg/NiNF nanodendrites were also highly active and selective catalysts for hydrogen generation from a formate solution with turnover frequency (TOF) values of 311 h-1 and 287 h-1 respectively. Impressively, a passive air-breathing formate fuel cell with PdAu/NiNF used as an anode can yield an open-circuit voltage of 1.12 V and a peak power density of 21.7 mW cm-2, which outperforms most others reported in the literature. PdAu and PdAg nanodendritic catalysts supported on a nickel foam demonstrate an open structure and uniform catalyst distribution and offer a promising nanoalloy for air-breathing formate fuel cells and on-site chemical hydrogen production systems.
Collapse
Affiliation(s)
- Bowei Pan
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuang Shan
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junpeng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Quan Tang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Longfei Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiao Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhen Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Muhammad Usman
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
2
|
Wang S, Ye D, Liu H, Zhu X, Lan Q, Yang Y, Chen R, Liao Q. Engineering a concordant microenvironment with air-liquid-solid interface to promote electrochemical H2O2 generation and wastewater purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|