1
|
Liao M, Zhang K, Luo C, Zeng H. Al-Based MOF-Derived Amorphous/Crystalline Heterophase Cobalt Sulfides as High-Performance Supercapacitor Materials. Inorg Chem 2024; 63:14074-14085. [PMID: 39012784 DOI: 10.1021/acs.inorgchem.4c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Transition metal sulfides (TMSs) are promising electrode materials due to their high theoretical specific capacitance, but sluggish charge transfer kinetics and an insufficient number of active sites hamper their applications in supercapacitors. In this work, a self-sacrificial template strategy was employed to construct Al-based MOF-derived metal sulfides with an amorphous/crystalline (a/c) heterophase, in which aluminum, nitrogen, and carbon species were evenly coordinated in the amorphous phase. The metal sulfides a/c-Co(Al)S-1 and a/c-Co(Al)S-2, originating from the CAU-1 and CoAl-MOF on NF as self-sacrificial templates, were investigated as electrode materials, respectively, in which the a/c-Co(Al)S-1 showed a more excellent electrochemical performance. Through acid etching CAU-1 using Co(NO3)2 followed by sulfuration, the a/c-Co(Al)S-1 with a unique 3D network structure was constructed, whose unique architecture expanded the interfacial contact with the electrolyte and provided vast active sites, accelerating the charge transportation and ion diffusion. Notably, the a/c-Co(Al)S-1 displayed a high specific charge of 1791.8 C g-1 at 1 A g-1, satisfactory cycle stability, and good rate capability. The corresponding assembled a/c-Co(Al)S-1//AC device delivered a high energy density of 77.1 Wh kg-1 at 800 W kg-1 and good durability (87.4% capacitance retention over 10 000 cycles).
Collapse
Affiliation(s)
- Mengchen Liao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kai Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Chaowei Luo
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongyan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
2
|
Sun A, Qiu Y, Chen K, Xu H, Liu J. Constructing built-in electric field in oxygen vacancies-enriched Fe 3O 4-FeSe 2 heterojunctions supported on reduced graphene oxide for efficient overall water splitting. J Colloid Interface Sci 2024; 674:1083-1091. [PMID: 39018937 DOI: 10.1016/j.jcis.2024.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Combining interfacial oxygen vacancy engineering with a built-in electric field (BEF) technique is an efficient way to build efficient and practical electrocatalytic water-splitting catalysts. In this study, a Fe3O4-FeSe2 heterojunction catalyst with oxygen vacancies supported on reduced graphene oxide (rGO) was designed and successfully fabricated using a simple two-step hydrothermal method. Owing to the different Fermi levels of Fe3O4 and FeSe2, a BEF was generated at the interface, which enhanced the separation of negative and positive charges, thus optimizing the adsorption of hydrogen/oxygen intermediates on the heterostructures and improving the activity of the catalyst. Experimental results show that Fe3O4-FeSe2/rGO/NF exhibits excellent hydrogen and oxygen evolution performances, with low overpotentials of 234/300 mV at 100 mA⋅cm-2. A water electrolyzer assembled with Fe3O4-FeSe2/rGO/NF as both the anode and cathode requires only a small potential of 1.78 V to reach a current density of 100 mA⋅cm-1. This study provides an innovative approach for constructing a catalyst with excellent electrocatalytic performance for overall water splitting.
Collapse
Affiliation(s)
- Aowei Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Kuiyong Chen
- College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| | - Hezeng Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China; College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| |
Collapse
|
3
|
Liu L, Liu T, Xu C, Zhao W, Fan J, Liu J, Ma X, Fu W. FeCoCuMnRuB Nanobox with Dual Driving of High-Entropy and Electron-Trap Effects as the Efficient Electrocatalyst for Water Oxidation. NANO LETTERS 2024; 24:2831-2838. [PMID: 38385633 DOI: 10.1021/acs.nanolett.3c04962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
High-entropy borides hold potential as electrocatalysts for water oxidation. However, the synthesis of the tailored nanostructures remains a challenge due to the thermodynamic immiscibility of polymetallic components. Herein, a FeCoCuMnRuB nanobox decorated with a nanosheet array was synthesized for the first time by a "coordination-etch-reduction" method. The FeCoCuMnRuB nanobox has various structural characteristics to express the catalytic performance; meanwhile, it combines the high-entropy effect of multiple components with the electron trap effect induced by electron-deficient B, synergistically regulating its electronic structure. As a result, FeCoCuMnRuB nanobox exhibits enhanced OER activity with a low overpotential (η10 = 233 mV), high TOF value (0.0539 s-1), small Tafel slope (61 mV/dec), and a satisfactory stability for 200 h, outperforming the high-entropy alloy and low-entropy borides. This work develops a high entropy and electron-deficient B-driven strategy for motivating the catalytic performance of water oxidation, which broadens the structural diversity and category of high-entropy materials.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Tinghui Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Can Xu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Wanyi Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Junping Fan
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jing Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xinguo Ma
- School of Science, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
4
|
Kazemi A, Manteghi F, Tehrani Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS OMEGA 2024; 9:7310-7335. [PMID: 38405471 PMCID: PMC10882616 DOI: 10.1021/acsomega.3c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The rising demand for fossil fuels and the resulting pollution have raised environmental concerns about energy production. Undoubtedly, hydrogen is the best candidate for producing clean and sustainable energy now and in the future. Water splitting is a promising and efficient process for hydrogen production, where catalysts play a key role in the hydrogen evolution reaction (HER). HER electrocatalysis can be well performed by Pt with a low overpotential close to zero and a Tafel slope of about 30 mV dec-1. However, the main challenge in expanding the hydrogen production process is using efficient and inexpensive catalysts. Due to electrocatalytic activity and electrochemical stability, transition metal compounds are the best options for HER electrocatalysts. This study will focus on analyzing the current situation and recent advances in the design and development of nanostructured electrocatalysts for noble and non-noble metals in HER electrocatalysis. In general, strategies including doping, crystallization control, structural engineering, carbon nanomaterials, and increasing active sites by changing morphology are helpful to improve HER performance. Finally, the challenges and future perspectives in designing functional and stable electrocatalysts for HER in efficient hydrogen production from water-splitting electrolysis will be described.
Collapse
Affiliation(s)
- Amir Kazemi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Faranak Manteghi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Zari Tehrani
- The
Future Manufacturing Research Institute, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| |
Collapse
|
5
|
Yao H, Wang P, Zhu M, Shi XR. Recent progress in hierarchical nanostructures for Ni-based industrial-level OER catalysts. Dalton Trans 2024; 53:2442-2449. [PMID: 38229516 DOI: 10.1039/d3dt03820c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Exploring efficient and low-cost oxygen evolution reaction (OER) electrocatalysts reaching the industrial level current density is crucial for hydrogen production via water electrolysis. In this feature article, we summarize the recent progress in hierarchical nanostructures for the industrial-level OER. The contents mainly concern (i) the design of a hierarchical structure; (ii) a Ni-based hierarchical structure for the industrial current density OER; and (iii) the surface reconstruction of the hierarchical structure during the OER process. The work provides valuable guidance and insights for the manufacture of hierarchical nanomaterials and devices for industrial applications.
Collapse
Affiliation(s)
- Haiyu Yao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Peijie Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Rong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Mu J, Bai P, Wang P, Xie Z, Zhao Y, Jing J, Su Y. An oxygen vacancy-modulated bifunctional S-NiMoO 4 electrocatalyst for efficient alkaline overall water splitting. Chem Commun (Camb) 2024; 60:1313-1316. [PMID: 38197169 DOI: 10.1039/d3cc05444f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
S-doped nickel molybdate nanorods grown on nickel foam (S-NiMoO4/NF) were fabricated by a two-step hydrothermal method. The resultant S-NiMoO4/NF exhibited remarkable bifunctional electrocatalytic activity, with overpotentials of 235 mV for the hydrogen evolution reaction and 150 mV for the oxygen evolution reaction at a current density of 50 mA cm-2. Assembled into the two-electrode S-NiMoO4/NF electrolyzer in alkaline electrolytes for overall water splitting, it required only low cell voltages of 1.55 V and 1.63 V to drive 50 mA cm-2 and 100 mA cm-2, respectively. No significant performance degradation occurred during the water electrolysis process. The experimental results confirmed that S-doping induced the increase of the oxygen vacancies, accelerating the reaction kinetics and thus improving the electrocatalytic performance. Meanwhile, more active sites exposure on the surface of S-NiMoO4/NF enhanced the reactivity. This work may guide the development of efficient bifunctional catalysts in alkaline electrolysis through oxygen vacancy regulation.
Collapse
Affiliation(s)
- Jiarong Mu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Ping Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Peng Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Zhinan Xie
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Yihua Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Jianfang Jing
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| |
Collapse
|
7
|
Song T, Xue H, Sun J, Guo N, Sun J, Hao YR, Wang Q. Incorporating a built-in electric field into a NiFe LDH heterojunction for enhanced oxygen evolution and urea oxidation. Chem Commun (Camb) 2024; 60:972-975. [PMID: 38165772 DOI: 10.1039/d3cc05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Herein, a N-doped carbon-supported Co and NiFe LDH (Co-NC@NiFe LDH) array was developed, which demonstrated superior catalytic activities for both the OER and UOR in an alkaline medium. The intrinsic electron transfer is effectively regulated by the construction of a built-in electric field, which reduces the reaction energy barrier and consequently leads to a significant enhancement in electrocatalytic activity.
Collapse
Affiliation(s)
- Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yi-Ru Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
8
|
Munawar T, Fatima S, Batoo KM, Bashir A, Mukhtar F, Hussain S, Manzoor S, Ashiq MN, Khan SA, Koc M, Iqbal F. Synergistic effect of a bamboo-like Bi 2S 3 covered Sm 2O 3 nanocomposite (Bi 2S 3-Sm 2O 3) for enhanced alkaline OER. Phys Chem Chem Phys 2024; 26:2678-2691. [PMID: 38175550 DOI: 10.1039/d3cp05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The availability of hydrogen energy from water splitting through the electrocatalytic route is strongly dependent on the efficiency, durability, and cost of the electrocatalysts. Herein, a novel Bi2S3-covered Sm2O3 (Bi2S3-Sm2O3) nanocomposite electrocatalyst was developed by a hydrothermal route for the oxygen evolution reaction (OER). The electrochemical properties were studied in 1.00 mol KOH solution after coating the target material on the stainless-steel substrate (SS). Physical analysis via XRD, FTIR, IV, TEM/EDX, and XPS revealed that the Bi2S3-Sm2O3 composite possesses metallic surface states, thereby displaying unconventional electron dynamics and purity of phases. The Bi2S3-Sm2O3 composite shows outstanding OER activity with a low overpotential of 197 mV and a Tafel slope of 74 mV dec-1 at a 10 mA cm-2 current density as compared to pure Bi2S3 and Sm2O3. Meanwhile, the composite catalyst retains high stability even after 100 h of the chronoamperometry test. Thus, this work unveils a new avenue for the speedy flow of electrons, which is attributed to the synergetic effect between Bi2S3 and Sm2O3, as well as enriched interfacial defects, which exhibit greater oxygen adsorption capability with improved electronic assemblies in the active interfacial region. In addition, the introduced porous structure in core-shell Bi2S3-Sm2O3 provides extraordinary electrical properties. Thus, this article offers a realistic framework for electrochemical energy generation.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Saman Fatima
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Khalid Mujasam Batoo
- College of Science, King Saud University, P.O. Box-2455, Riyadh-11451, Saudi Arabia
| | - Ambreen Bashir
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul-05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul-05006, Republic of Korea
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
9
|
Liu Z, Wang J, Kong Q, Tong X, Wu S, Zong N, Xu R, Yang L. Electrolyzing spent cupronickel to fabricate superhydrophilic electrocatalysts for enhanced water splitting. Dalton Trans 2023; 53:333-338. [PMID: 38050430 DOI: 10.1039/d3dt03300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, novel and efficient IF-supported NiCu (NiCu/IF) and NiMn (NiMn/IF) electrocatalysts are successfully deposited on iron foam (IF) via electrolysis of spent cupronickel (SCN), with outstanding performance for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in an alkaline solution, respectively. The physical and electrochemical characterization results demonstrate that the catalysts possess a large active surface area, remarkable performance, and excellent durability.
Collapse
Affiliation(s)
- Zhenwei Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junli Wang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Qingxiang Kong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoning Tong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Song Wu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Naixuan Zong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Rudong Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Linjing Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
10
|
Zeng Z, Wang J, Zhao S, Zhang Y, Fan J, Wu H, Chen J, Zhang Z, Meng Z, Yang L, Wang R, Zhang B, Wang G, Li C, Zang G. A Bioinspired Flexible Sensor for Electrochemical Probing of Dynamic Redox Disequilibrium in Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304079. [PMID: 37943018 PMCID: PMC10754098 DOI: 10.1002/advs.202304079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Malignant tumors pose a serious risk to human health. Ascorbic acid (AA) has potential for tumor therapy; however, the mechanism underlying the ability of AA to selectively kill tumor cells remains unclear. AA can cause redox disequilibrium in tumor cells, resulting in the release of abundant reactive oxygen species, represented by hydrogen peroxide (H2 O2 ). Therefore, the detection of H2 O2 changes can provide insight into the selective killing mechanism of AA against tumor cells. In this work, inspired by the ion-exchange mechanism in coral formation, a flexible H2 O2 sensor (PtNFs/CoPi@CC) is constructed to monitor the dynamics of H2 O2 in the cell microenvironment, which exhibits excellent sensitivity and spatiotemporal resolution. Moreover, the findings suggest that dehydroascorbic acid (DHA), the oxidation product of AA, is highly possible the substance that actually acts on tumor cells in AA therapy. Additionally, the intracellular redox disequilibrium and H2 O2 release caused by DHA are positively correlated with the abundance and activity of glucose transporter 1 (GLUT1). In conclusion, this work has revealed the potential mechanism underlying the ability of AA to selectively kill tumor cells through the construction and use of PtNFs/CoPi@CC. The findings provide new insights into the clinical application of AA.
Collapse
Affiliation(s)
- Zhongyuan Zeng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jian Wang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Yuchan Zhang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jingchuan Fan
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Hui Wu
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jiajia Chen
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Zaikuan Zhang
- The M.O.E. Key Laboratory of Laboratory Medical DiagnosticsThe College of Laboratory MedicineChongqing Medical UniversityChongqing400016P. R. China
| | - Zexuan Meng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Lu Yang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Renzhi Wang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Bo Zhang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Chen‐Zhong Li
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guangchao Zang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
11
|
Hou R, Yang X, Su L, Cen W, Ye L, Sun D. Accelerating structure reconstruction to form NiOOH in metal-organic frameworks (MOFs) for boosting the oxygen evolution reaction. NANOSCALE 2023; 15:18858-18863. [PMID: 37966341 DOI: 10.1039/d3nr05051c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Structural reconstruction of electrocatalysts to generate metal hydroxide/oxyhydroxide species is critical for an efficient oxygen evolution reaction (OER), but the controllable regulation of the reconstruction process still remains a challenge. Given the designable nature of metal-organic frameworks (MOFs), herein, we have reported a localized structure disordering strategy to accelerate the structural reconstruction of Ni-BDC to generate NiOOH for boosting the OER. The Ni-BDC nanosheets were modified by Fe3+ and urea to form cracks, which could promote the accessibility of the Ni sites by the electrolyte and thus promote the reconstruction to form NiOOH. In addition, the interaction between Ni2+ and Fe3+ allows the electron flow from Ni2+ to Fe3+, further enhancing the NiOOH generation. As a result, the optimized sample exhibits excellent OER activity with a small overpotential of 251 mV at 10 mA cm-2, which is superior to most of the MOF-based OER catalysts reported previously. This work provides a controllable strategy to regulate the structural reconstruction for promoting the OER, which could provide important guidance for the development of more efficient OER electrocatalysts.
Collapse
Affiliation(s)
- Ruiyao Hou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaoxia Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Linghui Su
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| | - Lin Ye
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, P. R. China.
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| |
Collapse
|
12
|
Fatima A, Aldosari H, Al-Buriahi MS, Al Huwayz M, Alrowaili ZA, Alqahtani MS, Ajmal M, Nazir A, Iqbal M, Tur Rasool R, Muqaddas S, Ali A. Cobalt Ferrite Surface-Modified Carbon Nanotube Fibers as an Efficient and Flexible Electrode for Overall Electrochemical Water Splitting Reactions. ACS OMEGA 2023; 8:37927-37935. [PMID: 37867638 PMCID: PMC10586273 DOI: 10.1021/acsomega.3c03314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
One of the most practical and environmentally friendly ways to deal with the energy crises and global warming is to produce hydrogen as clean fuel by splitting water. The central obstacle for electrochemical water splitting is the use of expensive metal-based catalysts. For electrocatalytic hydrogen production, it is essential to fabricate an efficient catalyst for the counterpart oxygen evolution reaction (OER), which is a four-electron-transfer sluggish process. Here in this study, we have successfully fabricated cobalt-based ferrite nanoparticles over the surface of carbon nanotube fiber (CNTF) that was utilized as flexible anode materials for the OER and overall electrochemical water splitting reactions. Scanning electron microscopy images with elemental mapping showed the growth of nanoparticles over CNTF, while electrochemical characterization exhibited excellent electrocatalytic performance. Linear sweep voltammetry revealed the reduced overpotential value (260 mV@η10mAcm-2) with a small Tafel slope of 149 mV dec-1. Boosted electrochemical double layer capacitance (0.87 mF cm-2) for the modified electrode also reflects the higher surface area as compared to pristine CNTF (Cdl = 0.022 mF cm-2). Charge transfer resistance for the surface-modified CNTF showed the lower diameter in the Nyquist plot and was consequently associated with the better Faradaic process at the electrode/electrolyte interface. Overall, the as-fabricated electrode could be a promising alternative for the efficient electrochemical water splitting reaction as compared to expensive metal-based electrocatalysts.
Collapse
Affiliation(s)
- Aneesa Fatima
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Haia Aldosari
- Department
of Physics, College of Science, Shaqra University, P.O. Box 5701, Shaqra 11961, Saudi Arabia
| | - M. S. Al-Buriahi
- Department
of Physics, Sakarya University, Sakarya 54050, Turkey
| | - Maryam Al Huwayz
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Z. A. Alrowaili
- Department
of Physics, College of Science, Jouf University, P.O. Box 2014, Sakaka 42421, Saudi Arabia
| | - Mohammed S. Alqahtani
- Department
of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Ajmal
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Arif Nazir
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Munawar Iqbal
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Raqiqa Tur Rasool
- Department
of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Sheza Muqaddas
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Abid Ali
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
13
|
Wang J, Luo Y, Wang J, Yu H, Guo Z, Yang J, Xue Y, Cai N, Li H, Yu F. One-pot self-assembled bimetallic sulfide particle cluster-supported three-dimensional graphene aerogel as an efficient electrocatalyst for the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:26298-26307. [PMID: 37747098 DOI: 10.1039/d3cp02041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The preparation of an electrocatalyst for the oxygen evolution reaction (OER) with high catalytic activity, good long-term durability and rapid reaction kinetics through interface engineering is of great significance. Herein, we have developed a bimetallic sulfide particle cluster-supported three-dimensional graphene aerogel (FeNiS@GA), which serves as an efficient electrocatalyst for OER, by a one-step hydrothermal method. Profiting from the synergy of the FeNiS particle cluster with high capacitance and GA with its three-dimensional porous nanostructure, FeNiS@GA shows a high specific surface area, large pore volume, low contact resistance, and decreases the electron and ion transport routes. FeNiS@GA exhibits outstanding OER activity (when the current density is 50 mA cm-2, the overpotential is 341 mV), low Tafel slope (63.87 mV dec-1) and remarkable stability in alkaline solutions, outperforming FeNiS, NiS@GA, FeS@GA and RuO2. Due to its simple synthesis process and excellent electrocatalytic performance, FeNiS@GA shows great potential to replace noble metal-based catalysts in practical applications.
Collapse
Affiliation(s)
- Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yu Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jiwei Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Hongliang Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ziyi Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jie Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
- Wuhan Institute of Technology, Liu Fang Campus, No. 206, Guanggu 1st road, Wuhan 430205, Hubei, China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
- Wuhan Institute of Technology, Liu Fang Campus, No. 206, Guanggu 1st road, Wuhan 430205, Hubei, China
| |
Collapse
|
14
|
Adhikari A, Chhetri K, Rai R, Acharya D, Kunwar J, Bhattarai RM, Jha RK, Kandel D, Kim HY, Kandel MR. (Fe-Co-Ni-Zn)-Based Metal-Organic Framework-Derived Electrocatalyst for Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2612. [PMID: 37764640 PMCID: PMC10534837 DOI: 10.3390/nano13182612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Zinc-air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc-air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc-air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal-organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Rajan Rai
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Jyotendra Kunwar
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju 690-756, Republic of Korea;
| | | | | | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Mani Ram Kandel
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| |
Collapse
|
15
|
Xu S, Ni H, Zhang X, Han C, Qian J. Abundant Surface Defects in Cobalt Hydroxides/Oxyhydroxides Induced by Zinc Species Facilitate Water Oxidation. Inorg Chem 2023; 62:14757-14763. [PMID: 37639239 DOI: 10.1021/acs.inorgchem.3c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The complex process of the anodic oxygen evolution reaction (OER) severely hinders overall water splitting, which further limits the large-scale production and application of hydrogen energy. In this work, one type of bimetallic coordination polymer of ZnCoBTC using the MOF-on-MOF strategy has been synthesized where both Co(II) and Zn(II) cations exhibit the same coordination environment. By applying an electric potential, the predesigned bimetallic MOF precursor can be conveniently degraded into CoOxHy as an active species for efficient OER. Owing to the dissolution of ZnOxHy species, in situ formed disordered defects on the external surface of the catalyst increase the specific surface area as well as expose abundant active materials. Therefore, the ZnCoOxHy nanosheet shows excellent OER performance and reaches an overpotential of only 334 mV at 10 mA cm-2 with a Tafel slope of 66.4 mV dec-1, indicating fast reaction kinetics. The results demonstrate that metals with the same coordination environment can undergo in situ replacement or secondary growth on the pristine MOF, and they can be electrochemically degraded into highly efficient catalysts for future energy applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
16
|
Meng D, Peng X, Zheng J, Wang Z. Cold plasma synthesis of phosphorus-doped CoFe 2O 4 with oxygen vacancies for enhanced OER activity. Phys Chem Chem Phys 2023; 25:22679-22688. [PMID: 37602521 DOI: 10.1039/d3cp02979d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Spinel-type metal oxides are promising electrocatalysts for the oxygen evolution reaction (OER) due to their unique electronic structure and low cost. Herein, we induced oxygen vacancies and doped phosphorus into CoFe2O4 using cold plasma. The abundant oxygen vacancies enhanced hydrophilicity and modified the electronic structure of CoFe2O4, while the phosphorus doping formed numerous new active centers. The doped P and formed FeP promoted the charge transfer and improved the conductivity of the catalyst. The phosphorus-doped CoFe2O4 exhibited exceptional OER activity with an overpotential of 180 mV at 10 mA cm-2 and a Tafel slope of 65.8 mV dec-1 in an alkaline electrolyte. DFT calculations confirmed that phosphorus doping can improve the charge distribution near the Fermi level and optimize the d-band center position.
Collapse
Affiliation(s)
- Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Xiangfeng Peng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
17
|
Xu C, Chang P, Liu Z, Guan L, Wang X, Tao J. Electrochemical activated molybdenum oxides based multiphase heterostructures with high hydrogen evolution activity in alkaline condition. NANOTECHNOLOGY 2023; 34:465402. [PMID: 37579742 DOI: 10.1088/1361-6528/acefd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Electrochemical activation is an effective method for synthesizing economically feasible heterogeneous hydrogen evolution reaction (HER) electrocatalysts. Herein, we first synthesized MoO2-Co2Mo3O8precatalyst, which was electrochemically activated to produce K2Mo3O10within the original phase to form the heterogeneous structure. The electrochemically activated samples demonstrate exceptional HER activity in alkaline medium, which exhibit a low overpotential of 31 mV at current density of 10 mA cm-2(135 mV at 100 mA cm-2), as well as a small Tafel slope of 34 mV dec-1. This is due to the creation of multiphase heterostructures that prompt interfacial interactions and accelerate charge transfer. Simultaneously, the creation of additional active sites increases their intrinsic activities. The combined effects collectively enhance the HER performance. The application of this method in the preparation of HER catalysts is still relatively unexplored, thus rendering our work a pioneering contribution to the field.
Collapse
Affiliation(s)
- Chao Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Pu Chang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Zongli Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Lixiu Guan
- School of Sciences, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Xiaohu Wang
- Ulanqab Key Laboratory of graphite (graphene) new materials, Rising Graphite Applied Technology Research Institute, Ulanqab, Inner Mongolia, 013650, People's Republic of China
| | - Junguang Tao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| |
Collapse
|
18
|
Zhang J, Deng W, Weng Y, Li X, Mao H, Lu T, Zhang W, Long D, Jiang F. Experimentally revealed and theoretically certified synergistic electronic interaction of V-doped CoS for facilitating the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:21661-21672. [PMID: 37551545 DOI: 10.1039/d3cp02849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Since electrocatalytic oxygen evolution (OER) is a four-electron transfer reaction with very slow kinetics, there is great competition to develop cheap, durable and efficient catalysts for oxygen evolution. A molecular model is designed for density functional theory (DFT) simulation calculations to guide the experiment, and this hypothesis is fully supported by the experimental data. Herein, regulating the composition and morphology of the bimetallic VCo and MoCo sulfide and monometallic sulfide nanoparticles (NPs) at the oil-water interface was achieved via a one-step hydrothermal method for efficient and durable OER electrocatalysts. Compared to CoS and MoCoS, the VCoS NPs show superior OER performance. By adjusting the atomic composition ratio of the VCoS nanoparticles, the VCoS NPs (1 : 2 : 1.5 mole ratio) showed a significant OER overpotential η = 255 mV (10 mA cm-2), and their outstanding stability was demonstrated after 48 h of continuous testing. The CoS and MoCoS NPs were also tested for comparison. Density functional theory (DFT) calculations showed that appropriate V doping (VCoS) can heighten the density of states (DOS) of the Fermi level, which generates more charge density and reduces the intermediate adsorption energy. This study not only provides efficient and powerful integrated catalysts, but also details a DFT calculation model guided by experiments to regulate the oxygen insertion technology, thus leading to the design of ideal materials and enabling more far-reaching applications in electrocatalysis.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yun Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textile, Donghua University, Shanghai 201620, China
| | - Xiang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Tiandong Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Wenqian Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Dewu Long
- Key Laboratory in Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fei Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
19
|
Ravi A, Mulkapuri S, Das SK. Hydroxylated Polyoxometalate with Cu(II)- and Cu(I)-Aqua Complexes: A Bifunctional Catalyst for Electrocatalytic Water Splitting at Neutral pH. Inorg Chem 2023; 62:12650-12663. [PMID: 37233196 DOI: 10.1021/acs.inorgchem.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A sole inorganic framework material [Li(H2O)4][{CuI(H2O)1.5} {CuII(H2O)3}2{WVI12O36(OH)6}]·N2·H2S·3H2O (1) consisting of a hydroxylated polyoxometalate (POM) anion, {WVI12O36(OH)6}6-, a mixed-valent Cu(II)- and Cu(I)-aqua cationic complex species, [{CuI(H2O)1.5}{CuII(H2O)3}2]5+, a Li(I)-aqua complex cation, and three solvent molecules, has been synthesized and structurally characterized. During its synthesis, the POM cluster anion gets functionalized with six hydroxyl groups, i.e., six WVI-OH groups per cluster unit. Moreover, structural and spectral analyses have shown the presence of H2S and N2 molecules in the concerned crystal lattice, formed from "sulfate-reducing ammonium oxidation (SRAO)". Compound 1 functions as a bifunctional electrocatalyst exhibiting oxygen evolution reaction (OER) by water oxidation and hydrogen evolution reaction (HER) by water reduction at the neutral pH. We could identify that the hydroxylated POM anion and copper-aqua complex cations are the functional sites for HER and OER, respectively. The overpotential, required to achieve a current density of 1 mA/cm2 in the case of HER (water reduction), is found to be 443 mV with a Faradaic efficiency of 84% and a turnover frequency of 4.66 s-1. In the case of OER (water oxidation), the overpotential needed to achieve a current density of 1 mA/cm2 is obtained to be 418 mV with a Faradaic efficiency of 80% and turnover frequency of 2.81 s-1. Diverse electrochemical controlled experiments have been performed to conclude that the title POM-based material functions as a true bifunctional catalyst for electrocatalytic HER as well as OER at the neutral pH without catalyst reconstruction.
Collapse
Affiliation(s)
- Athira Ravi
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Sateesh Mulkapuri
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
20
|
Kumar T, Devi B, Halder A, Koner RR. NiFe-Coordination Polymers-Derived Layered Double Hydroxides as Bifunctional Materials: Effect of the Ni : Fe Ratio on the Electrochemical Performance. Chempluschem 2023; 88:e202300186. [PMID: 37392080 DOI: 10.1002/cplu.202300186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The development of an efficient and cost-effective material is highly desirable for electrochemical devices such as electrolyzers and supercapacitors. Especially, pseudomorphic transformations of metal-organic frameworks (MOFs)/coordination polymers (CPs) into layered double hydroxides (LDHs) materials endow well-defined porosities, high surface area, exchangeable interlayer anions and easily adjustable electronic structure that are truly required for oxygen evolution reaction (OER) and high-performance supercapacitor applications. Herein, we have prepared NiFe-LDHs of various Ni/Fe ratios via a facile room-temperature alkaline hydrolysis of NiFe-CPs precursors. Electrochemical studies reveal that the catalyst having high amount of Fe (Ni1.2 Fe1 -LDH) showed the better OER activity with a low Tafel slope (65 mV dec-1 ) in 1 M KOH. On the other hand, the catalyst containing higher amount of Ni with better layered structure (Ni11.7 Fe1 -LDH) showed high performance for supercapacitor (702 F g-1 at 0.25 A g-1 ) in 3 M KOH. Moreover, a solid-state asymmetric supercapacitor device Ni11.7 Fe1 -LDH/AC was fabricated which exhibited a specific capacitance of 18 F g-1 at a current density of 1 A g-1 . The device displayed high cycling stability with 88% of capacitance retention after 7000 cycles. The experimental findings in this work will help in the futuristic development of NiFe-LDH based electrocatalysts for the enhanced electrochemical performances.
Collapse
Affiliation(s)
- Trivender Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Bandhana Devi
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Aditi Halder
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| |
Collapse
|
21
|
Deka N, Jones TE, Falling LJ, Sandoval-Diaz LE, Lunkenbein T, Velasco-Velez JJ, Chan TS, Chuang CH, Knop-Gericke A, Mom RV. On the Operando Structure of Ruthenium Oxides during the Oxygen Evolution Reaction in Acidic Media. ACS Catal 2023; 13:7488-7498. [PMID: 37288096 PMCID: PMC10242682 DOI: 10.1021/acscatal.3c01607] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/04/2023] [Indexed: 06/09/2023]
Abstract
In the search for rational design strategies for oxygen evolution reaction (OER) catalysts, linking the catalyst structure to activity and stability is key. However, highly active catalysts such as IrOx and RuOx undergo structural changes under OER conditions, and hence, structure-activity-stability relationships need to take into account the operando structure of the catalyst. Under the highly anodic conditions of the oxygen evolution reaction (OER), electrocatalysts are often converted into an active form. Here, we studied this activation for amorphous and crystalline ruthenium oxide using X-ray absorption spectroscopy (XAS) and electrochemical scanning electron microscopy (EC-SEM). We tracked the evolution of surface oxygen species in ruthenium oxides while in parallel mapping the oxidation state of the Ru atoms to draw a complete picture of the oxidation events that lead to the OER active structure. Our data show that a large fraction of the OH groups in the oxide are deprotonated under OER conditions, leading to a highly oxidized active material. The oxidation is centered not only on the Ru atoms but also on the oxygen lattice. This oxygen lattice activation is particularly strong for amorphous RuOx. We propose that this property is key for the high activity and low stability observed for amorphous ruthenium oxide.
Collapse
Affiliation(s)
- Nipon Deka
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Travis E. Jones
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lorenz J. Falling
- Lawrence
Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, United States
| | | | - Thomas Lunkenbein
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Cheng-Hao Chuang
- Department
of Physics, Tamkang University, No. 151, Yingzhuan Rd, New Taipei City 25137, Taiwan
| | - Axel Knop-Gericke
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rik V. Mom
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
22
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
23
|
Ferreira EB, Gibaldi M, Okada R, Kuroda Y, Mitsushima S, Jerkiewicz G. Tunable Method for the Preparation of Layered Double Hydroxide Nanoparticles and Mesoporous Mixed Metal Oxide Electrocatalysts for the Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37236238 DOI: 10.1021/acs.langmuir.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Preparation of high-performance and durable electrocatalysts for anion exchange membrane water electrolysis is a crucial step toward the broad implementation of this technology. Here, we present an easily tunable, one-step hydrothermal method for the preparation of Ni-based (NiX, X = Co, Fe) layered double hydroxide nanoparticles (LDHNPs) for the oxygen evolution reaction (OER), using tris(hydroxymethyl)aminomethane (Tris-NH2) for particle growth control. The LDHNPs are used as building blocks of mesoporous mixed metal oxides (MMOs) with a block copolymer template (Pluronic F127), followed by thermal treatment at 250 °C. NiX MMOs have a significantly larger surface area compared to the analogous LDHNPs. NiX LDHNPs and MMOs exhibit excellent performance and long-term cycling stability, making them promising OER catalysts. Moreover, this versatile method can be easily tailored and scaled up for the preparation of platinum group metal-free electrocatalysts for other reactions of interest, which highlights the relevance of this work to the field of electrocatalysis.
Collapse
Affiliation(s)
- Eduardo B Ferreira
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Marco Gibaldi
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ryuki Okada
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshiyuki Kuroda
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shigenori Mitsushima
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
24
|
Raja A, Son N, Kim YI, Kang M. Hybrid ternary NiCoCu layered double hydroxide electrocatalyst for alkaline hydrogen and oxygen evolution reaction. J Colloid Interface Sci 2023; 647:104-114. [PMID: 37245269 DOI: 10.1016/j.jcis.2023.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
This study focuses on the electrochemical properties of layered double hydroxide (LDH), which is a specific structure of NiCoCu LDH, and the active species therein, rather than the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) of ternary NiCoCu LDH materials. Six types of catalysts were synthesized using the reflux condenser method and coated onto a nickel foam support electrode. Compared to bare, binary, and ternary electrocatalysts, the NiCoCu LDH electrocatalyst exhibited higher stability. The double layer capacitance (Cdl) of the NiCoCu LDH (12.3 mF cm-2) is greater than that of the bare and binary electrocatalysts, indicating that the NiCoCu LDH electrocatalyst has a larger electrochemical active surface area. In addition, the NiCoCu LDH electrocatalyst has a lower overpotential of 87 mV and 224 mV for the HER and OER, respectively, indicating its excellent activity with the bare and binary electrocatalysts. Finally, it is demonstrated that the structural characteristics of the NiCoCu LDH contribute to its excellent stability in long-term HER and OER tests.
Collapse
Affiliation(s)
- Annamalai Raja
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Young-Il Kim
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
25
|
Gautam J, Chanda D, Mekete Meshesha M, Jang SG, Lyong Yang B. Manganese cobalt sulfide/molybdenum disulfide nanowire heterojunction as an excellent bifunctional catalyst for electrochemical water splitting. J Colloid Interface Sci 2023; 638:658-671. [PMID: 36774879 DOI: 10.1016/j.jcis.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Heterointerface engineering enhances catalytic active centers and charge transfer capabilities to increase oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) kinetics. In this study, a novel heterostructure of manganese cobalt sulfide-molybdenum disulfide on nickel foam (MnCo2S4-MoS2/NF) was synthesized via a two-step hydrothermal process. The nanowire-shaped MnCo2S4-MoS2 on NF displayed accelerated charge transfer ability and multiple integrated active sites. When tested in one molar (1 M) potassium hydroxide (KOH) electrolyte, it furnished low overpotentials of 105 and 171 mV for the HER and 220 and 300 mV for the OER at the current densities of 20 and 50 mA cm-2, respectively. An electrolyzer based on MnCo2S4-MoS2/NF required low operating potentials of 1.41 and 1.49 V to yield the current densities of 10 and 20 mA cm-2, respectively, surpassing commercial and previously reported catalysts. Density functional theory (DFT) analysis revealed that the MnCo2S4-MoS2 heterostructure possesses the optimal adsorption free energies for the reactants, an extended electroactive surface area, good charge transfer ability, and reasonable density of electronic states close to the Fermi level, all of which contribute to the high activity of catalyst. Thus, heterointerface engineering is a promising strategy for creating efficient catalysts for overall water splitting.
Collapse
Affiliation(s)
- Jagadis Gautam
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Debabrata Chanda
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Mikiyas Mekete Meshesha
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Seok Gwon Jang
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Bee Lyong Yang
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea.
| |
Collapse
|
26
|
Ding X, Jia C, Ma P, Chen H, Xue J, Wang D, Wang R, Cao H, Zuo M, Zhou S, Zhang Z, Zeng J, Bao J. Remote Synergy between Heterogeneous Single Atoms and Clusters for Enhanced Oxygen Evolution. NANO LETTERS 2023; 23:3309-3316. [PMID: 36946560 DOI: 10.1021/acs.nanolett.3c00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Integrating single atoms and clusters into one system is a novel strategy to achieve desired catalytic performances. Compared with homogeneous single-atom cluster catalysts, heterogeneous ones combine the merits of different species and therefore show greater potential. However, it is still challenging to construct single-atom cluster systems of heterogeneous species, and the underlying mechanism for activity improvement remains unclear. In this work, we developed a heterogeneous single-atom cluster catalyst (ConIr1/N-C) for efficient oxygen evolution. The Ir single atoms worked in synergy with the Co clusters at a distance of about 8 Å, which optimized the configuration of the key intermediates. Consequently, the oxygen evolution activity was significantly improved on ConIr1/N-C relative to the Co cluster catalyst (Con/N-C), exhibiting an overpotential lower by 107 mV than that of Con/N-C at 10 mA cm-2 and a turnover frequency 50.9 times as much as that of Con/N-C at an overpotential of 300 mV.
Collapse
Affiliation(s)
- Xilan Ding
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, P.R. China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Huihuang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Jiawei Xue
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Dongdi Wang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Heng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
27
|
Ali A, Najaf D, Nazir A, Haider A, Iqbal M, Alwadai N, Kausar A, Ahmad A. Fabrication of Efficient Electrocatalysts for Electrochemical Water Oxidation Using Bimetallic Oxides System. ACS OMEGA 2023; 8:9539-9546. [PMID: 36936294 PMCID: PMC10018688 DOI: 10.1021/acsomega.2c08288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The study focused on the fabrication of nickel, cobalt, and their bimetallic oxide via a facile electrodeposition approach over the surface of conducting glass has been reported here. Fabricated electrodes have been employed as binder-free and effective anode materials toward oxygen evolution reactions (OER) in electrochemical water splitting at high pH. Nickel and cobalt oxides showed overpotential values of 520 mV and 536 mV at the current density of 10 mAcm-2 with charge transfer resistances of 170 and 195 Ω. For bimetallic oxides (NiCoO@FTO), the overpotential depressed up to 460 mV and lower charge transfer value of 80 Ω. Additionally, double-layer capacitance also boosted for the bimetallic oxide with a value of 199 μF as compared to monometallic nickel oxide (106 μF) and cobalt oxide (120 μF). Multimetal oxides of Ni-Co showed the best performance, which was further supported with larger electrochemical surface area. This facile approach toward the electrode fabrication could be a charming alternate to replace the Ru- and Ir-based expensive materials for OER in electrochemical water splitting.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Dure Najaf
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Arif Nazir
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Ali Haider
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Munawar Iqbal
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Norah Alwadai
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abida Kausar
- Department
of Chemistry, Government College Women University
Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Ahmad
- Department
of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
28
|
Min K, Kim H, Ku B, Na R, Lee J, Baeck SH. Defect-rich Fe-doped Ni2P microflower with phosphorus vacancies as a high-performance electrocatalyst for oxygen evolution reaction. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
29
|
A hybrid electrocatalyst derived from Co-MOF by doping molybdenum for efficient hydrogen generation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Liu T, Liu W, Ma M, Guo L, Cui R, Cheng D, Cao D. Constructing nickel vanadium phosphide nanoarrays with highly active heterointerfaces for water oxidation in alkali media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Gebreslase GA, Sebastián D, Martínez-Huerta MV, Lázaro MJ. Nitrogen-doped carbon decorated-Ni3Fe@Fe3O4 electrocatalyst with enhanced oxygen evolution reaction performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Ahanjan K, Shamsipur M, Taherpour A, Pashabadi A. Catalytic synergism in Mn-heterostructured molybdenum oxysulfide hybridized with transition metal phosphides: A robust amorphous water oxidation catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Wu LZ, Zhou XY, Zeng PC, Huang JY, Zhang MD, Qin L. Hydrothermal synthesis of Ni(II) or Co(II)-based MOF for electrocatalytic hydrogen evolution. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Effect of Fe doping on Co-S/carbon cloth as bifunctional electrocatalyst for enhanced water splitting. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Wan X, Mo G, Luo J. Metal–organic frameworks derived
TiO
2
for photocatalytic degradation of tetracycline hydrochloride. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Wan
- Department of Chemical Engineering Sichuan University Chengdu Sichuan People's Republic of China
| | - Guanglai Mo
- Department of Chemical Engineering Sichuan University Chengdu Sichuan People's Republic of China
| | - Jianhong Luo
- Department of Chemical Engineering Sichuan University Chengdu Sichuan People's Republic of China
| |
Collapse
|
36
|
Pearson’s Principle-Inspired Robust 2D Amorphous Ni-Fe-Co Ternary Hydroxides on Carbon Textile for High-Performance Electrocatalytic Water Splitting. NANOMATERIALS 2022; 12:nano12142416. [PMID: 35889644 PMCID: PMC9316908 DOI: 10.3390/nano12142416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Layered double hydroxide (LDH) is widely used in electrocatalytic water splitting due to its good structural tunability, high intrinsic activity, and mild synthesis conditions, especially for flexible fiber-based catalysts. However, the poor stability of the interface between LDH and flexible carbon textile prepared by hydrothermal and electrodeposition methods greatly affects its active area and cyclic stability during deformation. Here, we report a salt-template-assisted method for the growth of two-dimensional (2D) amorphous ternary LDH based on dip-rolling technology. The robust and high-dimensional structure constructed by salt-template and fiber could achieve a carbon textile-based water splitting catalyst with high loading, strong catalytic activity, and good stability. The prepared 2D NiFeCo-LDH/CF electrode showed overpotentials of 220 mV and 151 mV in oxygen evolution and hydrogen evolution reactions, respectively, and simultaneously had no significant performance decrease after 100 consecutive bendings. This work provides a new strategy for efficiently designing robust, high-performance LDH on flexible fibers, which may have great potential in commercial applications.
Collapse
|
37
|
Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Reduced Graphene Oxide Supported Zinc Tungstate Nanoparticles as Proficient Electro-Catalysts for Hydrogen Evolution Reactions. Catalysts 2022. [DOI: 10.3390/catal12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The nanocomposites of reduced graphene oxide (rGO) supported zinc tungstate nanoparticles (ZnWO4-NPs) receive considerable attention in electro-catalytic hydrogen evolution reactions (HER) and reveal significantly higher electro-catalytic performances than pure ZnWO4-NPs in alkaline media (i.e., 0.5 M KOH electrolyte). The polarization studies show that the ZnWO4-NPs@rGO nanocomposites exhibit low energy loss and good electrode stability during electrochemical reactions for HER. Furthermore, the Tafel slope of ZnWO4-NPs@rGO nanocomposites is found to be approximately 149 mV/dec, which closely agrees with the reported Tafel values of the noble metal electrocatalyst. In contrast, the performance of the ZnWO4-NPs@rGO nanocomposite is found to be approximately 1.5 times higher than that of ZnWO4-NPs in hydrogen production efficiency. Our results emphasize the significance of the nanocomposites with enhanced electro-catalytic activities by lowering the energy loss during electro-catalysis in an alkaline medium.
Collapse
|
39
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
40
|
Wan K, Xiang Z, Liu W, Wei H, Fu Z, Liang Z. 过渡金属硫化物电解水析氢/析氧反应电催化剂研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Hartanto D, Yuhaneka G, Utomo WP, Rozafia AI, Kusumawati Y, Dahani W, Iryani A. Unveiling the charge transfer behavior within ZSM-5 and carbon nitride composites for enhanced photocatalytic degradation of methylene blue. RSC Adv 2022; 12:5665-5676. [PMID: 35425563 PMCID: PMC8981822 DOI: 10.1039/d1ra09406h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
ZSM-5/graphitic carbon nitride (g-C3N4) composites were successfully prepared using a simple solvothermal method. By varying the amount of ZSM-5 and g-C3N4 in the composites, the charge carrier (electrons and holes) transfer within the materials, which contributes to the enhanced photocatalytic performance, was unraveled. The X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM) analysis revealed that more ZSM-5 component leads to a stronger interaction with g-C3N4. The photocatalytic performance test toward methylene blue (MB) degradation shows that more ZSM-5 in the composites is beneficial in enhancing photocatalytic activity. Meanwhile, the impedance electron spectroscopy (EIS) and photoluminescence (PL) analysis revealed that ZSM-5 facilitates the charge carrier transfer of photogenerated electrons and holes from g-C3N4 to the catalyst surface due to its lower charge transfer resistance. During the charge carrier migration, the interface between g-C3N4 and ZSM-5 particles may induce higher resistance for the charge carrier transfer, however after passing through the interface from g-C3N4 to ZSM-5 particles, the charge carrier can be efficiently transferred to the surface, hence suppressing the charge carrier recombination.
Collapse
Affiliation(s)
- Djoko Hartanto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Grace Yuhaneka
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia .,Study Program of Laboratory Testing Analysis SMK Negeri 1 Driyorejo Gresik 61177 Indonesia
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia .,School of Energy and Environment, City University of Hong Kong Kowloon 999077 Hong Kong SAR
| | - Ade Irma Rozafia
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Wiwik Dahani
- Department of Mining Engineering, Trisakti University Jakarta Indonesia
| | - Ani Iryani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Pakuan University Bogor Indonesia
| |
Collapse
|
42
|
Deng K, Liu P, Liu X, Zheng J, Zhao R, Li H, Tian W, Ji J. Synergistic Coupling of SnS 2 Nanosheet Arrays with Ni/Fe Dual Metal and Ru Nanodots via a Cation Exchange Strategy for Overall Water Splitting. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jie Zheng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Renjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
43
|
Ahmed J, Alhokbany N, Ahamad T, Alshehri SM. Investigation of enhanced electro-catalytic HER/OER performances of copper tungsten oxide@reduced graphene oxide nanocomposites in alkaline and acidic media. NEW J CHEM 2022. [DOI: 10.1039/d1nj04617a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this paper, we investigate the electro-catalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of synthesized copper tungsten oxide@reduced graphene oxide (CuWO4@rGO) nanocomposites.
Collapse
Affiliation(s)
- Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Hu Z, Hao L, Quan F, Guo R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for the development of clean and efficient energy is becoming increasingly pressing due to depleting fossil fuels and environmental concerns.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fan Quan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
45
|
Wang J, Sun Y, Qi Y, Wang C. Vanadium-Doping and Interface Engineering for Synergistically Enhanced Electrochemical Overall Water Splitting and Urea Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57392-57402. [PMID: 34806865 DOI: 10.1021/acsami.1c18593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fabricating effective non-precious metal-based catalysts for hydrogen production via electrochemical water splitting is of considerable importance but remains challenging. Transition metal nitrides possessing metallic character and corrosion resistance have been considered as potential replacements for precious metals. However, their activities for water electrolysis are impeded by the strong hydrogen adsorption and low water adsorption energies. Herein, V-doped bimetallic nitrides, V-FeNi3N/Ni3N heterostructure, are synthesized via a hydrothermal-nitridation protocol and used as electrocatalysts for water splitting and urea electrolysis. The V-FeNi3N/Ni3N electrode exhibits superior HER and OER activities, and the overpotentials are 62 and 230 mV to acquire a current density of 10 mA cm-2, respectively. Moreover, as a bifunctional electrocatalyst for overall water splitting, a two-electrode device needs a voltage of 1.54 V to reach a current density of 10 mA cm-2. The continuous electrolysis can be run for more than 120 h, surpassing most previously reported electrocatalysts. The excellent performance for water electrolysis is dominantly due to V-doping and interface engineering, which could enhance water adsorption and regulate the adsorption/desorption of intermediates species, thereby accelerating HER and OER kinetic processes. Besides, a urea-assisted two-electrode electrolyzer for electrolytic hydrogen production requires a cell voltage of 1.46 V at 10 mA cm-2, which is 80 mV lower than that of traditional water electrolysis.
Collapse
Affiliation(s)
- Jie Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Sun
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yufeng Qi
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
46
|
Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution. J Colloid Interface Sci 2021; 610:173-181. [PMID: 34922073 DOI: 10.1016/j.jcis.2021.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022]
Abstract
The incorporation of borate is a beneficial strategy to improve the catalytic activity of transition metal-based electrocatalyts for oxygen evolution reaction (OER). However, how to efficiently introduce borate has always been a challenge. Here, a facile and scalable molten salt method is developed to successfully dope borate into FeNi layered double hydroxides (FeBi@FeNi LDH) for efficient OER. The molten salt method can not only promote the formation of evenly dispersed nano-pompous FeBi precursor, thus providing the possibility to realize the direct doping of borate and the increase of mass, charge transfer and oxygen evolution active sites in FeNi LDH, but also promote the in-situ growth of FeBi@FeNi LDH on the conductive iron foam, improvingconductivity and stability of the material. The results indicate that the synthesized FeBi@FeNi LDH shows enhanced OER activity by delivering current densities of 10 and 100 mA cm-2 at low overpotentials of 246 and 295 mV and showing a small Tafel slope of 56.48 mV dec-1, benefiting from the optimization of geometric structure of active sites as well as the adjustment of electron density by borate doping especially in the case of molten salt. In addition, the sample can maintain durability at an industrial current density of 100 mA cm-1 for 90 h. This work provides a new way for the construction of efficient catalysts using boron doping assisted by molten salt.
Collapse
|
47
|
Double shelled hollow CoS 2@MoS 2@NiS 2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting. J Colloid Interface Sci 2021; 610:653-662. [PMID: 34848059 DOI: 10.1016/j.jcis.2021.11.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022]
Abstract
Electrocatalysts play important role in various energy conversion and storage devices. The catalytic performance of electrocatalysts can be enhanced through the increasement of intrinsic catalytic activity by optimizing electronic structure and the improvement of exposed active sites by designing proper nanostructures. In this work, CoS2@MoS2@NiS2 nano polyhedron with double-shelled structure was prepared using metal organic framework as a precursor. Due to the rational integration of multifunctional active center, the strong electronic interaction of the various component, the high electrochemical surface area and shortened mass transport induced by the special structure, CoS2@MoS2@NiS2 exhibits high catalytic activity for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, low overpotentials of 156 and 200 mV was achieved to deliver a current density of 10 mA cm-2 for HER and OER, and a high half-wave potential of 0.80 V was observed for ORR. More importantly, the Zn-air battery assembled by CoS2@MoS2@NiS2 exhibits a high-power density of 80.28 mW cm-2 and could effectively drive overall water splitting. This work provides a new platform for designing multifunctional catalysts with high activity for energy conversion and storage.
Collapse
|
48
|
Ehsan M, Khan A. Aerosol-Assisted Chemical Vapor Deposition Growth of NiMoO 4 Nanoflowers on Nickel Foam as Effective Electrocatalysts toward Water Oxidation. ACS OMEGA 2021; 6:31339-31347. [PMID: 34841177 PMCID: PMC8613873 DOI: 10.1021/acsomega.1c05209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 05/03/2023]
Abstract
The fabrication of active and durable catalysts derived from transition metals is highly desired for the realization of efficient water oxidation reactions. This is particularly important to address the slow oxygen evolution reaction (OER) kinetics and hence can contribute to the conversion and storage of sustainable energy. In this study, the deposition of crystalline flowerlike 2D nanosheets of nickel molybdate (NiMoO4) directly on nickel foam (NF) through an aerosol-assisted chemical vapor deposition process is reported. The NiMoO4 nanosheets were developed on NF by altering the deposition time for 60 and 120 min at a fixed temperature of 480 °C. The structural determination by XRD and XPS analyses revealed a highly crystalline single phase NiMoO4. The micrographs of NiMoO4 show that the surface consisted of vertically aligned 2D nanosheets assembled into flowerlike structures. The nanosheets produced after 60 min deposition time on a network of NF is found to perform better for OER as compared to the one developed for 120 min. A reference current density of 10 mA cm-2 was achieved at an overpotential (η) of 320 mV, which was better as compared to that reported for the benchmark OER catalyst in 1.0 M KOH. Moreover, a small Tafel value (75 mV dec-1) and good OER stability for >15 h were also observed.
Collapse
Affiliation(s)
- Muhammad
Ali Ehsan
- Interdisciplinary Research
Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, P.O. Box 5040, Dhahran 31261, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research
Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, P.O. Box 5040, Dhahran 31261, Saudi Arabia
| |
Collapse
|
49
|
Tan J, Li R, Raheem SA, Pan L, Shen H, Liu J, Gao M, Yang M. Facile Construction of Carbon Encapsulated of Earth‐Abundant Metal Sulfides for Oxygen Electrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202101098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junbin Tan
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Rongrong Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Saheed Abiola Raheem
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Longhai Pan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Hangjia Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| |
Collapse
|
50
|
Xu X, Liu X, Zhong W, Zhang L, Liu G, Du Y. Nanostructured NiCo 2S 4@NiCo 2O 4-reduced graphene oxide as an efficient hydrogen evolution electrocatalyst in alkaline electrolyte. J Colloid Interface Sci 2021; 601:570-580. [PMID: 34091306 DOI: 10.1016/j.jcis.2021.05.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs), serving as precursors or templated to construct nanomaterials, which have gained great attentions in the field of electrocatalysis. However, their applications still remain some challenges due to poor conductivity and easy agglomeration. In this work, the MOFs-derived NiCo2S4@NiCo2O4 deposited on reduced Graphene Oxide (rGO) surface is designed by using a facile hydrothermal procedure. Attribute to the enlarged active surface area of the nanostructure and the strong synergistic effect between NiCo2S4 and NiCo2O4, as well as the excellent conductivity of rGO. The NiCo2S4@NiCo2O4-rGO catalyst displays ultrahigh hydrogen evolution reaction (HER) property and excellent stability, only need an overpotential of η10 = 95 mV to attain 10 mA cm-2 and deliver a small Tafel slope of b = 52 mV dec-1 in 1 M KOH. This work can provide a window to construct and develop new noble metal-free HER catalysts base on Ni-MOFs served as precursors.
Collapse
Affiliation(s)
- Xiaobing Xu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Xueming Liu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Wei Zhong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Lei Zhang
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Guangxiang Liu
- Nanjing Key Laboratory of Advanced Functional Materials, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Youwei Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|