1
|
Dolatkhah A, Dewani C, Kazem-Rostami M, Wilson LD. Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis. Polymers (Basel) 2024; 16:2500. [PMID: 39274133 PMCID: PMC11398182 DOI: 10.3390/polym16172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity.
Collapse
Affiliation(s)
- Asghar Dolatkhah
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Chandni Dewani
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur 302017, Rajasthan, India
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Zhang Y, Nie N, Wang H, Tong Z, Xing H, Zhang Y. Smart enzyme catalysts capable of self-separation by sensing the reaction extent. Biosens Bioelectron 2023; 239:115585. [PMID: 37597499 DOI: 10.1016/j.bios.2023.115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
A smart biocatalyst should dissolve homogeneously for catalysis and recover spontaneously at the end of the reaction. In this study, we present a strategy for preparing self-precipitating enzyme catalysts by exploiting reaction-induced pH decreases, which connect the reaction extent to the catalyst aggregation state. Using poly(methacrylic acid)-functionalized gold nanoparticles as carriers, we construct smart catalysts with three model systems, including the glucose oxidase (GOx)-catalase (CAT) cascade, the alcohol dehydrogenase (ADH)-glucose dehydrogenase (GDH) cascade, and a combination of two lipases. All smart catalysts can self-separate with a nearly 100% recovery efficiency when a certain conversion threshold is reached. The threshold can be adjusted depending on the reaction demand and buffer capacity. By monitoring the optical signals caused by the dissolution/precipitation of smart catalysts, we propose a prototypic automation system that may enable unsupervised batch/fed-batch bioprocessing.
Collapse
Affiliation(s)
- Yinchen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ning Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoran Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyi Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Xing
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Pradhan SS, Saha S. Advances in design and applications of polymer brush modified anisotropic particles. Adv Colloid Interface Sci 2022; 300:102580. [PMID: 34922246 DOI: 10.1016/j.cis.2021.102580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Current advancements in the creation of anisotropy in particles and their surface modification with polymer brushes have established a new class of hybrid materials termed polymer brush modified anisotropic particles (PBMAP). PBMAPs display unique property combinations, e.g., multi-functionality in multiple directions along with smart behavior, which is not easily achievable in traditional hybrid materials. Typically, anisotropic particles can be categorized based on three different factors, such as shape anisotropy (geometry driven), compositional anisotropy (functionality driven), and surface anisotropy (spatio-selective surface modification driven). In this review, we have particularly focused on the synthetic strategies to construct the various type of PBMAPs based on inorganic or organic core which may or may not be isotropic in nature, and their applications in various fields ranging from drug delivery to catalysis. In addition, superior performances and fascinating properties of PBMAPs over their isotropic analogues are also highlighted. A brief overview of their future developments and associated challenges have been discussed at the end.
Collapse
Affiliation(s)
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
5
|
Zhou Y, Zeng B, Zhou R, Li X, Zhang G. One-Pot Synthesis of Multiple Stimuli-Responsive Magnetic Nanomaterials Based on the Biomineralization of Elastin-like Polypeptides. ACS OMEGA 2021; 6:27946-27954. [PMID: 34722994 PMCID: PMC8552364 DOI: 10.1021/acsomega.1c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of multiple stimuli-responsive magnetic nanomaterials in a green way remains as a big challenge currently. Herein, temperature-responsive elastin-like polypeptides (ELPs) were designed to involve in the biomimetic mineralization and successfully prepared magnetic nanoparticles (MNPs) (named ELPs-MNPs) with multiple responsiveness (temperature, magnetic, and biomimetic silicification responsiveness) in one pot. ELPs-MNPs were identified as cubic nanomaterials with an average size of about 32 nm and in line with the classic ferromagnetic behavior. Interestingly, ELPs-MNPs show clearly lower critical solution temperature phase behavior with a transition temperature of 36 °C. Moreover, ELPs-MNPs can spontaneously trigger the biosilicification of tetramethyl orthosilicate (TMOS) to entrap themselves into silicon oxide as proved by the Fourier transform infrared spectra (FTIR) and elemental mapping of transmission electron microscopy (TEM), with an average size of about 62 nm. The possible role of ELPs in the biomimetic preparation of the multiple stimuli-responsive MNPs was also addressed. The proposed novel and simple one-pot strategy to synthesize multifunctional nanomaterials with higher effectiveness is the first report for preparing MNPs with multiple stimuli response. This strategy conforms to the concept of green chemistry and will pave a new way for the design of smart biomaterials, which may have great potentials for different fields.
Collapse
|
6
|
Matveeva VG, Bronstein LM. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. NANOMATERIALS 2021; 11:nano11092257. [PMID: 34578573 PMCID: PMC8469579 DOI: 10.3390/nano11092257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
In this short review (Perspective), we identify key features of the performance of biocatalysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles (NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic supports is their easy separation due to the magnetic attraction between magnetic NPs and an external magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers, silica, or some other protective layer. However, in those cases when iron oxide NPs are in close proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy of the performance due to the enzyme-like properties shown in iron oxides. Another important parameter which is discussed in this review is the magnetic support porosity, especially in hierarchical porous supports. In the case of comparatively large pores, which can freely accommodate enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as surface-modifying agents or special enzyme reactor designs can be also influential in the performance of magnetic NP based immobilized enzymes.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Dong Y, Li T, Cai D, Yang S, Zhou X, Nie H, Yang Z. Progress and Prospect of Organic Electrocatalysts in Lithium-Sulfur Batteries. Front Chem 2021; 9:703354. [PMID: 34336789 PMCID: PMC8322034 DOI: 10.3389/fchem.2021.703354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Lithium-sulfur (Li-S) batteries featured by ultra-high energy density and cost-efficiency are considered the most promising candidate for the next-generation energy storage system. However, their pragmatic applications confront several non-negligible drawbacks that mainly originate from the reaction and transformation of sulfur intermediates. Grasping and catalyzing these sulfur species motivated the research topics in this field. In this regard, carbon dopants with metal/metal-free atoms together with transition-metal complex, as traditional lithium polysulfide (LiPS) propellers, exhibited significant electrochemical performance promotions. Nevertheless, only the surface atoms of these host-accelerators can possibly be used as active sites. In sharp contrast, organic materials with a tunable structure and composition can be dispersed as individual molecules on the surface of substrates that may be more efficient electrocatalysts. The well-defined molecular structures also contribute to elucidate the involved surface-binding mechanisms. Inspired by these perceptions, organic electrocatalysts have achieved a great progress in recent decades. This review focuses on the organic electrocatalysts used in each part of Li-S batteries and discusses the structure-activity relationship between the introduced organic molecules and LiPSs. Ultimately, the future developments and prospects of organic electrocatalysts in Li-S batteries are also discussed.
Collapse
Affiliation(s)
- Yangyang Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Tingting Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
9
|
Li T, Wang W, Wang S, Liu L, Chang W, Li J. Thermo‐responsive block copolymer
micelle‐supported
(
S
)‐α,
α‐diphenylprolinol
trimethylsilyl ether for asymmetric Michael addition of nitroalkenes and aldehydes in water. J Appl Polym Sci 2021. [DOI: 10.1002/app.49831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tao Li
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
- Center for Joint Surgery, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Weilin Wang
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Songmeng Wang
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
10
|
Del Arco J, Alcántara AR, Fernández-Lafuente R, Fernández-Lucas J. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. BIORESOURCE TECHNOLOGY 2021; 322:124547. [PMID: 33352394 DOI: 10.1016/j.biortech.2020.124547] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess technology will be also discussed.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
11
|
Köhler T, Heida T, Hoefgen S, Weigel N, Valiante V, Thiele J. Cell-free protein synthesis and in situ immobilization of deGFP-MatB in polymer microgels for malonate-to-malonyl CoA conversion. RSC Adv 2020; 10:40588-40596. [PMID: 35520868 PMCID: PMC9057574 DOI: 10.1039/d0ra06702d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
We describe a bottom-up approach towards functional enzymes utilizing microgels as carriers for genetic information that enable cell-free protein synthesis, in situ immobilization, and utilization of functional deGFP-MatB.
Collapse
Affiliation(s)
- Tony Köhler
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Thomas Heida
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Niclas Weigel
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| |
Collapse
|
12
|
Kadambar VK, Bellare M, Bollella P, Katz E, Melman A. Electrochemical control of the catalytic activity of immobilized enzymes. Chem Commun (Camb) 2020; 56:13800-13803. [DOI: 10.1039/d0cc06190e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of the catalytic activity of enzymes immobilized on carbon nanotube electrodes was achieved by changing their local pH environment using electrochemical reactions.
Collapse
Affiliation(s)
| | - Madhura Bellare
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Artem Melman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|