1
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
2
|
Xie C, He J, Wang Y, Zhang D, Liu H, Sun B. Fast detection of tryptamine in meat products with azide-functionalized covalent organic frameworks confined in molecularly imprinted polymers. Food Chem 2024; 452:139527. [PMID: 38703741 DOI: 10.1016/j.foodchem.2024.139527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Tryptamine is a biogenic amine that affects organoleptic quality through the generation of off-odours in foods. Herein, imine-based covalent organic frameworks (COFs) were synthesized via Schiff base reactions and postmodified with click chemistry to generate azide-functionalized COFs with tunable azide units on the walls. The combination of molecular imprinting with COFs enabled the specific recognition of the targets. The resulting optosensing system (azide-functionalized COFs@MIPs) was used as a sample-to-answer analyser for detecting tryptamine (detection time within 10 min). A linear relationship was observed for the fluorescence response to tryptamine concentrations in the range of 3-120 μg L-1, with a limit of detection of 1.74 μg L-1. The recoveries for spiked samples were satisfactory, with relative standard deviations <9.90%. The optosensing system is a potential tool for the quantitative detection of tryptamine in meat products because of its lower cost, shorter processing time, and simpler processing steps compared to conventional chromatographic techniques.
Collapse
Affiliation(s)
- Chenchen Xie
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | | | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China.
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
3
|
Yang L, Wang J, Li CY, Liu Q, Wang J, Wu J, Lv H, Ji XM, Liu JM, Wang S. Hollow-structured molecularly imprinted polymers enabled specific enrichment and highly sensitive determination of aflatoxin B1 and sterigmatocystin against complex sample matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131127. [PMID: 36871463 DOI: 10.1016/j.jhazmat.2023.131127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The biotoxins with high toxicity have the potential to be manufactured into biochemical weapons, seriously threatening international public security. Developing robust and applicable sample pretreatment platforms and reliable quantification methods has been recognized as the most promising and practical approach to solving these problems. Through the integration of the hollow-structured microporous organic networks (HMONs) as the imprinting carriers, we proposed a molecular imprinting platform (HMON@MIP) with enhanced adsorption performance in terms of specificity, imprinting cavity density as well as adsorption capacity. The HMONs core of MIPs provided a hydrophobic surface that enhanced the adsorption of biotoxin template molecules during the imprinting process, resulting in an increased imprinting cavity density. The HMON@MIP adsorption platform could produce a series of MIP adsorbents by changing the biotoxin template, such as aflatoxin and sterigmatocystin, and showed promising generalizability. The limits of detection (LOD) of the HMON@MIP-based preconcentration method for AFT B1 and ST were 4.4 and 6.7 ng L-1, respectively, and the method was applicable to food sample with satisfied recoveries of 81.2-95.1%. And the specific recognition and adsorption sites left on HMON@MIP by the imprinting process can achieve outstanding selectivity for AFT B1 and ST. The developed imprinting platforms hold great potential for application in the identification and determination of various food hazards in complex food sample matrices and contribute to precise food safety inspection.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue-Meng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Zhang Y, Liu H, Sun B. High-precision luminescent covalent organic frameworks with sp 2-carbon connection for visual detecting of nereistoxin-related insecticide. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130866. [PMID: 36753911 DOI: 10.1016/j.jhazmat.2023.130866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A new strategy for nereistoxin-related insecticide, cartap, detection in foodstuff and the environment is of great importance due to its poisoning of human beings through direct exposure or via biomagnification. Herein, a highly planar conjugated sp2 carbon-connected COF (F-Csp2-TT) was synthesized via Knoevenagel condensation reaction followed by the post-modification to develop a new platform for cartap visual detection in agricultural and food samples. The synergistic effect of highly planar conjugation and dense functional groups in the opened framework endowed F-Csp2-TT with a high-precision luminescence sensing performance. Meanwhile, the exquisitely designed F-Csp2-TT presented robust chemical stability, radiation stability, and good reproducibility. Benefiting from these advantages, high-precision luminescent F-Csp2-TT achieves a low detection limit of 0.51 μg/L to cartap over the range of 1-300 μg/L (R2=0.9938), and the recoveries percentage in food products was calculated as 95.90%- 119.3%. More significantly, the smartphone-based high-precision platform by F-Csp2-TT was established and successfully applied to portable monitoring of cartap and water content. Therefore, our work revealed the enormous potential of Csp2-connected COF, which opened a new situation for insecticide detection.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
5
|
Zhang D, Zhang F, Wang S, Hu S, Liao Y, Wang F, Liu H. Red-to-blue colorimetric probe based on biomass carbon dots for smartphone-integrated optosensing of Cu(II) and L-cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122285. [PMID: 36592594 DOI: 10.1016/j.saa.2022.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
We constructed a smartphone-integrated optosensor with inexpensive, reversible, environmental friendly, and rapid adsorption to detect Cu(II) and L-cysteine (L-Cys). The key part of this study was to prepare a red-to-blue colorimetric probe from herbaceous andrographis paniculata using one-pot polymerization at room temperature. When Cu(II) existed, the red fluorescence on the surface of the core-shell probe was quenched, while the blue fluorescence of the core did not respond, because the colorimetric probe interacted with the Cu(II) on the surface of red CDs. After L-Cys added, it interacted with the Cu(II) to strip it from the surface of red CDs, resulting in the recovery of fluorescence response. Under optimal conditions, the detection limits of this method for Cu(II) and L-Cys were 71 nM and 12 nM, respectively. Further, the red-to-blue colorimetric probe was integrated into smartphone with a software application to convert fluorescent color images into specific red (R), green (G), and blue (B) values. The spiked recovery of Cu(II) and L-Cys in lake water was verified the feasibility of the developed optosensors with a recovery of 98.2-101.6 % and 103.3-121.6 %. This method for detecting Cu(II) and L-Cys can not only recognize metal ions from actual samples, but also effectively protect CDs from quenching and restore fluorescence.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Furui Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Sha Hu
- Qingdao Grain and Oils Quality Inspection and Military Grain and Oils Supply Center, Qingdao 266042, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
6
|
Yuan XY, He J, Su H, Liu H, Sun B. Magnetically Controlled Nanorobots Based on Red Emissive Peptide Dots and Artificial Antibodies for Specific Recognition and Smart Scavenging of Nε-(Carboxymethyl)lysine in Dairy Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4970-4981. [PMID: 36897289 DOI: 10.1021/acs.jafc.2c08777] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Food-borne advanced glycation end products (AGEs) are highly related to various irreversible diseases, and Nε-(carboxymethyl)lysine (CML) is the typical hazardous AGE. The development of feasible strategies to monitor and reduce CML exposure has become desirable to address the problems. In this work, we proposed magnetically controlled nanorobots by integrating an optosensing platform with specific recognition and binding capability, realizing specific anchoring and accurate determination as well as efficient scavenging of CML in dairy products. The artificial antibodies offered CML imprinted cavities for highly selective absorption, and the optosensing strategy was designed based on electron transfer from red emissive self-assembling peptide dots (r-SAPDs) to CML, which was responsible for the identity, response, and loading process. The r-SAPDs overcame the interference from autofluorescence, and the limit of detection was 0.29 μg L-1, which bestowed accuracy and reliability for in situ monitoring. The selective binding process was accomplished within 20 min with an adsorption capacity of 23.2 mg g-1. Through an external magnetic field, CML-loaded nanorobots were oriented, moved, and separated from the matrix, which enabled their scavenging effects and reusability. The fast stimuli-responsive performance and recyclability of the nanorobots provided a versatility strategy for effective detection and control of hazards in food.
Collapse
Affiliation(s)
- Xin-Yue Yuan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jingbo He
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
7
|
Han L, Zhu X, Zhang D, Liu H, Sun B. Peptide-Based Molecularly Imprinted Polymer: A Visual and Digital Platform for Specific Recognition and Detection of Ethyl Carbamate. ACS Sens 2023; 8:694-703. [PMID: 36706033 DOI: 10.1021/acssensors.2c02197] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A visual and digital platform was constructed by peptide-based molecularly imprinted polymers (PMIPs) for specific recognition and detection of ethyl carbamate (EC). Here, the optosensing core was creatively constructed by the covalent assembly of dipeptides (H-Phe-Phe-OH) and genipin biomolecules for high fluorescence quantum yield and dual-signal response capability. MIPs were wrapped in the shell of the optosensing core for selectivity of EC from actual samples of alcoholic beverages. The genipin-FF nanoparticles (GFPNs)@PMIPs exhibited dual-band red-blue fluorescence image with a low detection limit of 0.817 and 1.65 μg L-1, respectively, in the optimal linear range of 2-240 μg L-1. The accuracy of this method was verified by the spiked recovery experiment, and a good recovery from 83.97 to 106.75% of the proposed optosensing method was obtained. In addition, a smartphone application was coupled with GFPNs@PMIPs to realize online real-time detection of EC. With the addition of EC, the color change of G and B values was negligible compared with the R value. This work also provides a potential method for on-site visual detection of analytes.
Collapse
Affiliation(s)
- Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing100048, China
| | - Xuecheng Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing100048, China
| | - Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing100048, China
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing100048, China
| |
Collapse
|
8
|
Energy-efficient Preparation of Amino and Sulfhydryl Functionalized Biomass Carbon Dots via a Reverse Microemulsion for Specific Recognition of Fe 3+ and L-cysteine. J Fluoresc 2022; 33:1111-1123. [PMID: 36580202 DOI: 10.1007/s10895-022-03054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 12/30/2022]
Abstract
Amino- and sulfhydryl- functionalized biomass carbon dots (BCDs) were prepared by one-pot reverse microemulsion for specific recognition of ferric ions (Fe3+) and L-cysteine (L-Cys). Green grapefruit peel was used as the carbon source while aminosilane and mercaptosilane were used as N- and S-supplier. Following the adsorption of Fe3+ on the surfaces of BCDs-NH2 and BCDs-SH, the fluorescence responses was quenched step by step, while adding L-Cys to the BCDs-NH2/Fe3+ system restored the fluorescence. The BCDs-NH2 and BCDs-SH system exhibited extremely low limits of detection for Fe3+ of 3.2 and 3.0 nM, respectively, within a wide linear ranges of 0.006-200 μM and 0.004-200 μM, respectively. The BCDs-NH2/Fe3+ systems were used as an optosensor for L-Cys in the concentration ranges of 0.08-30 and 30-1000 μM with a detection limit of 65 nM. Developed BCDs-NH2 and BCDs-SH were able to respond to Fe3+ in water samples with satisfactory recoveries of 100.1%-103.1% and 94.6%-108.5%, respectively, and the BCDs-NH2/Fe3+ system was also able to respond to BCDs-NH2/Fe3+ in actual lake water samples with recoveries from 87.3% to 98.8%. Meanwhile, The BCDs-NH2 exhibited good photoluminescence and stability, and the with a fluorescence quantum yield was as high as 25%. This work demonstrates the feasibility of using such materials to remove hazardous ions from water and employing the resulting complexes for optosensing in a sustainable manner.
Collapse
|
9
|
Baohe Li, Jiang L, Wang Y, Li C, Yu D, Wang N. Construction and Properties of New-Type Photo-Responsive Molecular Imprinting Materials. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Han L, Zhu P, Liu H, Sun B. Molecularly imprinted bulk and solgel optosensing based on biomass carbon dots derived from watermelon peel for detection of ethyl carbamate in alcoholic beverages. Mikrochim Acta 2022; 189:286. [PMID: 35852632 DOI: 10.1007/s00604-022-05388-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Biomass carbon dots synthesized by biological waste conform to the trend of ecological environmental protection and the requirements of green chemistry, which show great application potential in practice. In the study, we used watermelon peels as the raw materials to synthesize a novel blue biomass carbon dots (CDs) by a hydrothermal process with high fluorescence quantum yield of 22.8%. Through bulk polymerization and solgel method, two kinds of core-shell nanospheres were developed as fluorescent probes to recognize and detect ethyl carbamate (EC) rapidly without complex samples pretreatment. The obtained CDs@MIPs integrated the high-performance optical characteristics of CDs with excellent selectivity and adsorption of MIPs, which showed ideal linear relationships in the EC concentration range 1-120 μg L-1 and low LOD of 0.57 μg L-1 and 0.94 μg L-1, respectively. Both CDs@MIPs have a short equilibration time which was around 20 min, and the imprinting factors (IF) are 4.04 and 2.62. The recoveries of the six spiked samples were satisfying, and the RSD precisions were lower than 5.57%. Gas chromatography-mass spectrometry was seen as a parallel analysis to validate the correctness of the results, which indicated the practicability and reliability of the developed method. This proposal strategy of optical sensors provided an effective channel for trace EC recognition, with numerous advantages, involving eco-friendly, low cost, high sensitivity, separation effect, and good selectivity.
Collapse
Affiliation(s)
- Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Pei Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
11
|
Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for “Turn-Off–On” High-Sensitivity Detection of Fe3+ and L-Cysteine. Molecules 2022; 27:molecules27134099. [PMID: 35807347 PMCID: PMC9268387 DOI: 10.3390/molecules27134099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
This study designed a “turn-off–on” fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent “turn-off” probes to detect Fe3+ with a limit of detection of 0.086 µM, a linear detection range of 0.1–160 µM, and recovery of 83.47–106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4–85 µM. Recovery of L-Cys in amino acid beverage was 87.08–122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe3+ and L-Cys.
Collapse
|
12
|
Zhu X, Han L, Liu H, Sun B. A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chem 2022; 379:132154. [DOI: 10.1016/j.foodchem.2022.132154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022]
|
13
|
Chiroptical-responsive nanoprobe for the optosensing of chiral amino acids. Mikrochim Acta 2022; 189:184. [PMID: 35396633 DOI: 10.1007/s00604-022-05282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
A supersensitive chiroptical-responsive system of enantioselectively recognizing L- and D-tryptophan (Trp) based on ( +)-diacetyl-L-tartaric anhydride-functionalized 1,3,5-triformylphloroglucinol (DTA-functionalized Tp) was constructed for the first time. With a high fluorescence quantum yield of 15.2% and fluorescence lifetime of 57.6 μs, DTA-functionalized Tp as both fluorescent and chiral recognition nanoprobe was used for the discrimination of L- and D-Trp with excitation/emission maxima at 330/490 nm within 3 min. The linear range of the fluorescence sensing was 0.002-0.15 μg mL-1, and the detection limit achieved 1.4 ng mL-1. Furthermore, a smartphone was employed as a detector and processor to couple with the chiroptical-responsive nanoprobe for establishing a novel and visual integration system for rapid and real-time detection of chiral amino acids with a detection limit of 13 ng mL-1. The spiked recoveries of L-Trp in two commercially available functional beverages ranged from 86.00 to 118.33% in fluorescence and smartphone-based sensing system. Based on the excellent chiroptical-responsive effects, high stability, and biocompatibility, the chiroptical-responsive nanoprobe was successfully applied to visual optosensing and fluorescence imaging in response to L- and D-Trp in HeLa cells. This discrimination methodology with high sensitivity and enantioselectively shows great potential for in-site visually monitoring chiral amino acids in real food samples and tracking physiological processes.
Collapse
|
14
|
Liu K, Pan M, Hong L, Xie X, Yang J, Wang S, Wang Z, Wang S. Electrochemical sensing platform for the detection of methyl parathion applying highly biocompatible non-covalent functionalized phosphonium-based ionic liquid@MWCNTs hybrid to immobilize hemoglobin. Biosens Bioelectron 2022; 197:113755. [PMID: 34740119 DOI: 10.1016/j.bios.2021.113755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 11/02/2022]
Abstract
A hydrophobic carboxyl functionalized phosphonium-based ionic liquid (IL) ((5-carboxypentyl) triphenylphosphonium bis (trifluoromethyl)sulfonyl) amide, TPP-HA[TFSI]) was synthesized through a simple hydrothermal approach. Based on the π-π and cation-π interactions with multi-wall carbon nanotubes (MWCNTs), a TPP-HA[TFSI]@MWCNTs hybrid was prepared to immobilize hemoglobin (Hb) to fabricate a simple and effective electrochemical sensing platform for the detection of methyl parathion (MP) in vegetables. Spectroscopic and electrochemical results show that TPP-HA[TFSI]@MWCNTs substrate synergistically provided a good biocompatible microenvironment for Hb, and the hydrophobicity of TPP-HA[TFSI] and the π-π interaction and hydrogen bonding between TPP-HA[TFSI]@MWCNTs, Hb and nafion (NF) were conducive to maintain the stability and integrity of the modified electrode interface. The TPP-HA[TFSI]@MWCNTs with large surface area and high conductivity promoted the exposure of the electroactive center of Hb and the direct electron transfer between Hb and the electrode, which effectively amplified the electrochemical signal and improved the sensitivity of MP detection. The constructed electrochemical sensing platform had a wider linear range (2-14 ng mL-1) and a lower detection limit (0.62 ng mL-1) for MP, and had acceptable repeatability, reproducibility, stability and anti-interference ability. This results indicated that the phosphonium-based ILs functionalized MWCNTs was an effective substrate for the immobilization of biological components, which have broad prospect in the construction of electrochemical sensing interfaces.
Collapse
Affiliation(s)
- Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhijuan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
15
|
Han L, Meng C, Zhang D, Liu H, Sun B. Fabrication of a fluorescence probe via molecularly imprinted polymers on carbazole-based covalent organic frameworks for optosensing of ethyl carbamate in fermented alcoholic beverages. Anal Chim Acta 2022; 1192:339381. [DOI: 10.1016/j.aca.2021.339381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/01/2022]
|
16
|
John BK, Abraham T, Mathew B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. J Fluoresc 2022; 32:449-471. [DOI: 10.1007/s10895-021-02852-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
|
17
|
共价有机框架分子印迹聚合物复合材料的制备及其用于牛奶中痕量诺氟沙星的选择性富集. Se Pu 2022; 40:1-9. [PMID: 34985210 PMCID: PMC9404097 DOI: 10.3724/sp.j.1123.2021.03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
诺氟沙星(NFX)作为一种常见的喹诺酮类兽药,被广泛应用于畜牧业中,但其会残留在动物体内,进而对人体健康造成危害,为此有许多国家和组织均对NFX残留量进行了严格限制。为实现对复杂体系中痕量NFX残留的准确与可靠分析,该文制备了一种以共价有机框架(COFs)为载体的分子印迹聚合物(MIPs)。首先,在室温条件下,以金属三氟酸盐为催化剂,对苯二甲醛和3,3'-二氨基联苯为原料快速合成了“席夫碱”型共价有机框架(DP-COF)。然后将NFX、甲基丙烯酸、乙二醇二甲基丙烯酸酯与DP-COF混合,利用偶氮二异丁腈引发聚合反应,即可得到DP-COF@MIPs。整个制备过程条件温和,耗时仅5 h。采用场发射扫描电镜、傅里叶红外光谱、X射线衍射仪、BET比表面积测试仪等对其进行了表征。结果证实成功制备出了DP-COF@MIPs,该材料表面粗糙,拥有介孔范围的孔径(17.79 nm)。通过吸附实验、重复使用性实验对材料性能进行评估,结果表明该材料表观吸附容量高达41.57 mg/g,对NFX具有良好的特异性和选择性识别能力,且重复使用率令人满意。结合HPLC-UV-Vis,实现对牛奶样品中痕量NFX的检测。在3个加标水平下(0.03、0.1、0.3 mg/L),平均回收率为88.8%~92.9%,相对标准偏差小于1.7%。结果表明,该方法可以实现在复杂基质中对兽药残留高选择性、高灵敏度及准确性的检测。
Collapse
|
18
|
Jiang W, Zhao Y, Zhang D, Zhu X, Liu H, Sun B. Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework. Biosens Bioelectron 2021; 194:113582. [PMID: 34461567 DOI: 10.1016/j.bios.2021.113582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/23/2023]
Abstract
In the study, we have developed an efficient and robust method using dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors inside a covalent organic framework. Carbazole-conjugated frameworks (CCFs) were used to prepare efficient fluorescent probes that combine stability with light-emitting activity. CN linkages between aldehydes and amines formed Schiff bases, allowing the development of layered structures, creating exceptionally stable frameworks. Artificial receptors that can bind compounds inside the CCFs with high affinity, for both the detection and absorption of λ-cyhalothrin (LC), were constructed using room-temperature reverse microemulsion polymerization. Under optimum conditions, the fluorescence sensing correlation with the concentration of LC showed good linearity in the range of 0.8-175 μg L-1 with a detection limit of 0.368 μg L-1. The smartphone-based visible readout exhibited a good effect, with a detection limit of 4.067 μg L-1, and recovery of 88 %-103% in food samples. A parallel analysis in food samples was conducted by high-performance liquid chromatography, the results showed good consistency, indicating the practicability of the developed method. Dual mode analysis can avoid the disadvantages of a single response, providing excellent sensitivity, specificity, and efficiency through a strong binding force between the target and the artificial receptors.
Collapse
Affiliation(s)
- Wei Jiang
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Yuan Zhao
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Xuecheng Zhu
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Huilin Liu
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Zhang D, Zhao Y, Yuan X, Liu H, Wang J, Sun B. An ionic liquid-assisted quantum dot-grafted covalent organic framework-based multi-dimensional sensing array for discrimination of insecticides using principal component analysis and clustered heat map. Mikrochim Acta 2021; 188:298. [PMID: 34401933 DOI: 10.1007/s00604-021-04936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023]
Abstract
A robust multi-dimensional sensing array based on VBimBF4B/MAA-anchored quantum dot (QD)-grafted covalent organic frameworks (COFs) [(V-M)/QD-grafted COFs] was established via one-pot strategy. The multi-dimensional sensing array has the outstanding advantages of physicochemical and thermal stability, large specific surface area, and regular pore structures. The assistance of ionic liquid VBimBF4B enhanced the transduction efficiency, and the synergistic effect of COFs enhanced detection efficiency. The improved multi-dimensional sensing array by COFs and ionic liquid VBimBF4B served to identify seven insecticides by non-specific interactions via hydrogen bonding, and the differences in the kinetics of the binding to the insecticides resulted in variation of the three-output channel (fluorescence, phosphorescence, and light scattering) signals, thus generating a distinct optical fingerprint. The unique fingerprint patterns of seven kinds of common insecticides at 200 μg L-1 were successfully discriminated using principal component analysis and clustered heat map analysis. The multi-dimensional sensing array showed a response to seven insecticides based on three spectral channels over the range of 0.001-0.4 μg mL-1 with a limit of detection of 1.08-18.68 μg L-1. The spiked recovery of tap water was 79.86-134.22%, with RSD ranging from 0.89-14.9%. This study broadens the applications of sensing arrays technology and provides a promising building block for insecticide determination.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Xinyue Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| |
Collapse
|
20
|
Zhu X, Yuan X, Han L, Liu H, Sun B. A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens Bioelectron 2021; 191:113460. [PMID: 34186303 DOI: 10.1016/j.bios.2021.113460] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023]
Abstract
This report described the development of an optosensing platform based on red-emission carbon dots (RCDs) integrated with a smartphone application that, together, can detect pyrethroids in real time. Based on the high stability and selectivity of molecular imprinting technology, RCDs-based optosensing imprinted polymers was obtained by using a one-pot inverse microemulsion surface imprinting method. Lambda-cyhalothrin (LC), which is a pyrethroid pesticide, can interact with the widely distributed -NH2 groups on the surface of the RCD-based optosensing nanomaterials to achieve fixed-point adsorption. The quantitative detection of pyrethroids in a wide concentration range (1-120 μg/L) could be achieved, and the limit of detection (LOD) was 0.89 μg/L. Furthermore, a portable UV light box combined with a smartphone was used to convert the change in fluorescence of the RCDs-based optosensing nanomaterials into specific values upon adding pyrethroids, and the LOD by using smartphone was 6.66 μg/L. The developed platform has numerous advantages, including low cost, simple operation, high sensitivity, and good specificity, among others, and it achieves on-site visualization and rapid detection.
Collapse
Affiliation(s)
- Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Xinyue Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Luxuan Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
21
|
Affiliation(s)
- Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University 11 Fucheng Road Beijing 100048 China
| | - Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University 11 Fucheng Road Beijing 100048 China
| | - Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University 11 Fucheng Road Beijing 100048 China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University 11 Fucheng Road Beijing 100048 China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University 11 Fucheng Road Beijing 100048 China
| |
Collapse
|
22
|
Zhao Q, Ma C, Liu J, Chen Z, Zhao H, Li B, Yang X. Synthesis of magnetic covalent organic framework molecularly imprinted polymers at room temperature: A novel imprinted strategy for thermo-sensitive substance. Talanta 2020; 225:121958. [PMID: 33592713 DOI: 10.1016/j.talanta.2020.121958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Molecularly imprinted polymers (MIPs) with specific selective recognition have shown excellent performance in the rapid and efficient separation and enrichment of targets in complex systems. Unfortunately, it is not suitable for thermosensitive substances with biological functions. To this end, an imine-linked MIPs with covalent organic frameworks and magnetic nanoparticles was developed by using a room temperature synthesis strategy for the purification of Cyaninin-3-O-glucoside (C3G) from black chokeberry. The prepared material recognized C3G through π-π interaction, assisted by hydrogen bond, and will not be disturbed by water environment. The adsorption capacity and equilibrium binding constant were 86.92 mg g-1 and 1.46 L mg-1, respectively. Based on this special structure, it can also act as a "protective umbrella" and improve the stability of C3G. Furthermore, it exhibited high selectivity compared with dummy template imprinting technique. After purification, the purity of C3G was obviously improved (from 11.96% to 84.72%). This work provided a new strategy for the selective separation of anthocyanin and a method to develop MIPs for thermosensitive substances.
Collapse
Affiliation(s)
- Qianyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Jingyi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Zilong Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, 330004, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Bin Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, 330004, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
23
|
Yuan X, Liu H, Sun B. N-doped carbon dots derived from covalent organic frameworks embedded in molecularly imprinted polymers for optosensing of flonicamid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Yuan X, Zhang D, Zhu X, Liu H, Sun B. Triple-dimensional spectroscopy combined with chemometrics for the discrimination of pesticide residues based on ionic liquid-stabilized Mn-ZnS quantum dots and covalent organic frameworks. Food Chem 2020; 342:128299. [PMID: 33508901 DOI: 10.1016/j.foodchem.2020.128299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
Manganese-doped zinc sulfide quantum dots (Mn-ZnS QDs) are promising candidates for multi-channel sensing analysis due to their multi-dimensional optical properties. In this study, we integrated amino-silane and ionic liquid co-modified Mn-ZnS QDs and covalent organic frameworks (COFs) into optosensing nanoparticles to provide triple-dimensional optical response signals and combined them with chemometrics for the analysis of multiple pesticide residues. Through the exploration and optimization of a series of conditions, fluorescence, room temperature phosphorescence, and ultraviolet-visible combined with chemometrics were used for the discrimination and recognition of multiple pesticide residues in fruits and vegetables. The ionic liquid of 1-vinyl-3-ethylimidazolium tetrafluoroborate was used to modify Mn-ZnS QDs to improve the optical response and enrichment of pesticide adsorption sites, which were also synergistically enhanced by the COF support. This is a potential method to discriminate pesticides efficiently and enables fast and reliable analysis of pesticides in the agricultural and food industries.
Collapse
Affiliation(s)
- Xinyue Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
25
|
Park Y, Kim Y, Chang H, Won S, Kim H, Kwon W. Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J Mater Chem B 2020; 8:8935-8951. [PMID: 32901641 DOI: 10.1039/d0tb01334j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon dots (CDs) are promising materials for biomedical applications owing to their unique properties, biocompatibility, and biodegradability. The current studies on CDs are focused on improving their functionality by modulating their electronic structure, which helps in controlling their chemical, optical, and electrical properties. Doping with heteroatoms is a typical approach for modulating the electronic structure of CDs. In particular, there has been considerable progress in nitrogen-doped CDs for improving their potential for various biomedical applications, including optical imaging, drug delivery, and light-mediated imaging/therapeutic applications such as photoacoustic imaging, photothermal therapy, and photodynamic therapy. In this review, the important features of nitrogen-doped CDs are discussed along with the recent studies on these materials and their prospects.
Collapse
Affiliation(s)
- Yoonsang Park
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea and Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Yujin Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Heemin Chang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Sungyeon Won
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| |
Collapse
|