1
|
Ma YF, Zhang ML, Lu XY, Ren YX, Yang XG. Artificial light harvesting system of CM6@Zn-MOF nanosheets with highly enhanced photoelectric performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125152. [PMID: 39332073 DOI: 10.1016/j.saa.2024.125152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
As donors for effective energy transfer, metal-organic frameworks (MOFs) have attracted the attention of many experts in the field of artificial light-harvesting materials. This study introduces a novel two-dimensional Zn-MOF, synthesized using flexible 1,3-phenyldiacetic acid (H2mpda) and rigid 1,3,5-tris(1-imidazolyl)benzene (tib) as organic ligands. Through atomic force microscopy (AFM), we have determined the monolayer thickness of this novel material to be 5 nm. Achieving two-dimensional Zn-MOF nanosheets with large BET surface area was made possible by employing ultrasonic stripping techniques. The fluorescence emission spectrum of Zn-MOF nanosheets overlaps with the UV-vis absorption spectrum of coumarin 6 (CM6), so they can be used as a donor and acceptor for fluorescence resonance energy transfer (FRET) to construct an artificial light-harvesting system (ALHS). Compared with single crystal Zn-MOF, CM6@Zn-MOF(2) has a larger BET surface area (41 m2/g), higher quantum yield (Φfl, 30.56 %), narrower energy gap (Eg, 2.87 eV), and the light-harvesting range extends to the visible green light area. Notably, CM6@Zn-MOF(2) demonstrates a robust photocurrent response, characterized by a photocurrent on/off ratio (Ilight/Idark) of 21, and a maximum photocurrent density that surpasses that of pure Zn-MOF (2.25:1). This study successfully designed a high-performance photoelectric conversion material CM6@Zn-MOF(2), which laid a certain theoretical foundation for new artificial optical acquisition systems and electrochemical material selection.
Collapse
Affiliation(s)
- Ya-Fei Ma
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Xue-Ying Lu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
2
|
Sun G, Li M, Cai L, Zhu J, Tang Y, Yao Y. Carbazole-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation reaction. Chem Commun (Camb) 2024; 60:1412-1415. [PMID: 38205596 DOI: 10.1039/d3cc05405e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A carbazole-based artificial light-harvesting system (LHS) was successfully fabricated based on the supramolecular assembly of AIE-enhanced donor (CTD), water-soluble phosphate-pillar[5]arene (WPP5), and eosin Y (ESY) acceptor. The formed WPP5-CTD possessed remarkable AIE emission, featuring an ideal energy donor for light harvesting. After encapsulation of ESY, the energy of WPP5-CTD was efficiently transferred to ESY in WPP5-CTD-ESY, and the antenna effect was 38.5, which was much higher than that of recently reported LHSs. Notably, WPP5-CTD-ESY was successfully utilized as a photocatalyst to realize the cross-coupling dehydrogenation reaction of diphenylphosphine oxide and benzothiazole derivatives, suggesting great potential for aqueous photocatalytic applications of this LHS.
Collapse
Affiliation(s)
- Guangping Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Menghang Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Lijuan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Zhang D, Li M, Jiang B, Liu S, Yang J, Yang X, Ma K, Yuan X, Yi T. Three-step cascaded artificial light-harvesting systems with tunable efficiency based on metallacycles. J Colloid Interface Sci 2023; 652:1494-1502. [PMID: 37659317 DOI: 10.1016/j.jcis.2023.08.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
It is still challenging to develop multi-step cascaded artificial light-harvesting systems (ALHSs) with tunable efficiency. Here, we designed novel cascaded ALHSs with AIE-active metallacycles as the light-harvesting antenna, Eosin Y (ESY) and sulforhodamine 101 (SR101) as conveyors, near-infrared emissive chlorin-e6 (Ce6) as the final acceptor. The close contact and fair spectral overlap between donor and acceptor molecules at each level ensured the efficient sequential three-step energy transfer. The excited energy was sequentially and efficiently funneled to Ce6 along the cascaded line MTPEPt1 → ESY → SR101 → Ce6. Additionally, a unique strategy for regulating the efficiency of ALHS was illustrated by adjusting hydrophilic and hydrophobic interactions.
Collapse
Affiliation(s)
- Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China.
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Jie Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Ke Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaojuan Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
4
|
Wang N, Yang W, Feng L, Xu XD, Feng S. A supramolecular artificial light-harvesting system based on a luminescent platinum(II) metallacage. Dalton Trans 2023; 52:15524-15529. [PMID: 37622328 DOI: 10.1039/d3dt01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A trigonal luminescent metallacage was constructed by the coordination-driven self-assembly of m-pyridine-modified tetraphenylene ligands with organic Pt(II) acceptors, which exhibited excellent Aggregation-Induced Emission (AIE) properties. An efficient artificial light-harvesting system was successfully constructed by selecting the metallacage as the donor and the hydrophobic fluorescent dye Nile Red (NiR) as the donor molecule in a system of acetone/water (1/9, v/v), The absorption spectra of NiR and the emission spectra of the metallacage showed considerable overlap, achieving energy transfer from the metallacage to NiR.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Weiao Yang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Lei Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
5
|
Chen M, Lu Z, Li M, Jiang B, Liu S, Li Y, Zhang B, Li X, Yi T, Zhang D. Near-Infrared Emissive Cascaded Artificial Light-Harvesting System with Enhanced Antibacterial Efficiency. Adv Healthc Mater 2023; 12:e2300377. [PMID: 37122070 DOI: 10.1002/adhm.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Indexed: 05/02/2023]
Abstract
Combination of platinum(II) metallacycles and photodynamic inactivation presents a promising antibacterial strategy. Herein, a cascaded artificial light-capturing system is developed in which an aggregation-induced emission-active platinum(II) metallacycle (PtTPEM) is utilized as the antenna, sulforhodamine 101 (SR101) as a key conveyor, and the near-infrared emissive photosensitizer Chlorin-e6 (Ce6) as the final energy acceptor. The well-dispersed Ce6 in the proximity of energy donors not only avoids self-quenching in the physiological environment but also contributes to energy transfer from donor to acceptor, thereby significantly improving the 1 O2 generation ability of the light-harvesting system under white light irradiation. By integrating the platinum(II) metallacycle and 1 O2 , a more efficient synergistic antibacterial effect is achieved at low concentrations, along with a significant decrease in dark toxicity caused by PtTPEM.
Collapse
Affiliation(s)
- Maowen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yinuo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bangrui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xianying Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
6
|
Sun G, Li M, Cai L, Wang D, Cui Y, Hu Y, Sun T, Zhu J, Tang Y. Water-soluble phosphate-pillar[5]arene (WPP5)-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation. J Colloid Interface Sci 2023; 641:803-811. [PMID: 36966569 DOI: 10.1016/j.jcis.2023.03.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/25/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
A novel water-soluble phosphate-pillar[5]arene (WPP5)-based artificial light-harvesting system (LHS) was successfully fabricated through the supramolecular assembly of phenyl-pyridyl-acrylonitrile derivative (PBT), WPP5, and organic pigment Eosin Y (ESY). Initially, after host-guest interaction, WPP5 could bind well with PBT and form WPP5 ⊃ PBT complexes in water, which further assembled into WPP5 ⊃ PBT nanoparticles. WPP5 ⊃ PBT nanoparticles performed an outstanding aggregation-induced emission (AIE) capability because of the J-aggregates of PBT in WPP5 ⊃ PBT nanoparticles, which were appropriate as fluorescence resonance energy transfer (FRET) donors for artificial light-harvesting. Moreover, due to the emission region of WPP5 ⊃ PBT overlapped well with the UV-Vis absorption of ESY, the energy of WPP5 ⊃ PBT (donor) could be significantly transferred to ESY (acceptor) via FRET process in WPP5 ⊃ PBT-ESY nanoparticles. Notably, the antenna effect (AEWPP5⊃PBT-ESY) of WPP5 ⊃ PBT-ESY LHS was determined to be 30.3, which was much higher than that of recent artificial LHSs for photocatalytic cross-coupling dehydrogenation (CCD) reactions, suggesting a potential application in photocatalytic reaction. Furthermore, through the energy transfer from PBT to ESY, the absolute fluorescence quantum yields performed a remarkable increase from 14.4% (for WPP5 ⊃ PBT) to 35.7% (for WPP5 ⊃ PBT-ESY), further confirming their FRET processes in WPP5 ⊃ PBT-ESY LHS. Subsequently, in order to output the harvested energy for catalytic reactions, WPP5 ⊃ PBT-ESY LHSs were used as photosensitizers to catalyze the CCD reaction of benzothiazole and diphenylphosphine oxide. Compared to free ESY group (21%), a significant cross-coupling yield of 75% in WPP5 ⊃ PBT-ESY LHS was observed, because more UV region energy of PBT was transferred to ESY for CCD reaction, which suggested more potential in improving the catalytic activity of organic pigment photosensitizers in aqueous systems.
Collapse
|
7
|
Qu WJ, Liu T, Chai Y, Ji D, Che YX, Hu JP, Yao H, Lin Q, Wei TB, Shi B. Efficient detection of L-aspartic acid and L-glutamic acid by self-assembled fluorescent microparticles with AIE and FRET activities. Org Biomol Chem 2023; 21:4022-4027. [PMID: 37128802 DOI: 10.1039/d2ob02297d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amino acids play an important role in the formation of proteins, enzymes, hormones and peptides in animals. Moreover, aspartic acid and glutamic acid have a critical impact on the central nervous system as excitatory neurotransmitters. Here, we report the highly selective detection of L-glutamic acid (L-Glu) and L-aspartic acid (L-Asp) using fluorescent microparticles constructed by the combination of aggregation-induced emission and self-assembly-induced Förster resonance energy transfer.
Collapse
Affiliation(s)
- Wen-Juan Qu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tingting Liu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yongping Chai
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Dongyan Ji
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yu-Xin Che
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Jian-Peng Hu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
8
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Chen XM, Chen X, Hou XF, Zhang S, Chen D, Li Q. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications. NANOSCALE ADVANCES 2023; 5:1830-1852. [PMID: 36998669 PMCID: PMC10044677 DOI: 10.1039/d2na00934j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University Kent OH 44242 USA
| |
Collapse
|
10
|
Ahmed S, Kumar A, Mukherjee PS. A benzothiadiazole-based Pt(II) coordination polymer as an efficient heterogeneous photocatalyst for visible-light-driven aerobic oxidative coupling of amines. Chem Commun (Camb) 2023; 59:3229-3232. [PMID: 36825544 DOI: 10.1039/d3cc00021d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
An emissive Pt(II) coordination polymer (TBP) was synthesized by assembling a benzothiadiazole-based Pt(II) acceptor (A) with a tetraphenylethene (TPE) containing donor (L). Multiple benzothiadiazole units in the polymeric array of the TBP rendered it with reactive oxygen species generation ability. TBP was found to be an excellent photocatalyst for oxidative coupling of benzylamine under visible light with full conversion within 2 hours at room temperature and reusability for multiple cycles. Such photocatalytic efficiency under ambient conditions, reusability of the catalyst, and easy separation of the product are noteworthy.
Collapse
Affiliation(s)
- Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
11
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Construction and application of the polyelectrolyte-based sequential artificial light-harvesting system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Li C, Liu Q, Tao S. Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow. Nat Commun 2022; 13:6034. [PMID: 36229467 PMCID: PMC9562343 DOI: 10.1038/s41467-022-33857-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Achieving an ideal light-harvesting system at a low cost remains a challenge. Herein, we report the synthesis of a hybrid dye system based on tetraphenylene (TPE) encapsulated organic dyes in a continuous flow microreactor. The composite dye nanoparticles (NPs) are synthesized based on supramolecular self-assembly to achieve the co-emission of aggregation-induced emission dyes and aggregation-caused quenching dyes (CEAA). Numerical simulations and molecular spectroscopy were used to investigate the synthesis mechanism of the CEAA dyes. Nanoparticles of CEAA dyes provide a platform for efficient cascade Förster resonance energy transfer (FRET). Composite dye nanoparticles of TPE and Nile red (NiR) are synthesized for an ideal light-harvesting system using coumarin 6 (C-6) as an energy intermediate. The light-harvesting system has a considerable red-shift distance (~126 nm), high energy-transfer efficiency (ΦET) of 99.37%, and an antenna effect of 26.23. Finally, the versatility of the preparation method and the diversity of CEAA dyes are demonstrated.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.,Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qi Liu
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shengyang Tao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China. .,Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
14
|
Tung JC, Li PL, Hou MH. Investigating the generation and propagation evolution of orange optical vortices using continuous-wave KGW Raman lasers with astigmatic mode transformations. OPTICS EXPRESS 2022; 30:34557-34565. [PMID: 36242465 DOI: 10.1364/oe.470070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Various high-order orange beams (HOBs) at 588 nm are produced via off-center pumped Nd:YVO4/KGW Raman lasers. We experimentally confirm that the HOBs can be fairly sustained at the incident pump power of 2.88 W, where the average output powers are overall from 300 mW to 160 mW with increasing the off-center displacements from 0.14 mm to 0.21 mm. The HOBs are further transformed by using an astigmatic mode converter to generate a variety of structured lights with optical vortices. Moreover, theoretical wave functions are analytically derived to characterize the propagation evolution of the converted HOBs. The experimental patterns for all propagating positions are excellently reconstructed by the derived wave functions, and the evolution of phase structures is numerically calculated to manifest the robust optical vortices.
Collapse
|
15
|
Dai XY, Huo M, Dong X, Hu YY, Liu Y. Noncovalent Polymerization-Activated Ultrastrong Near-Infrared Room-Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203534. [PMID: 35771589 DOI: 10.1002/adma.202203534] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials.
Collapse
Affiliation(s)
- Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaoyun Dong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Yang Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Luo Y, Zhang W, Ren Q, Tao Z, Xiao X. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29806-29812. [PMID: 35748110 DOI: 10.1021/acsami.2c05599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Relying on the supramolecular self-assembly of twisted cucurbit[14]urils (tQ[14]), anthracene derivatives (ADPy), Nile red (NiR), and rhodamine B (RB), highly efficient light-harvesting systems have been successfully designed in an aqueous medium. The addition of tQ[14] causes ADPy to aggregate through supramolecular self-assembly to form a supramolecular polymer (ADPy@tQ[14]) with excellent aggregation-induced fluorescence and an interesting spherical external morphology, making it a remarkable energy donor. Consequently, efficient energy-transfer processes have occurred between ADPy@tQ[14] assembly and NiR and RB, which both serve as effective energy acceptors while being loaded onto ADPy@tQ[14]. In the case of NiR, the energy-transfer efficiency is up to 72.45%, and the antenna effect is near 55.4 at a donor/acceptor ratio of 100:1, making it close to the light-harvesting systems in nature. As a result, effective water-soluble artificial light-harvesting systems are showing enormous prospective as versatile platforms for simulating photosynthesis.
Collapse
Affiliation(s)
- Yang Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qian Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Asad M, Imran Anwar M, Abbas A, Younas A, Hussain S, Gao R, Li LK, Shahid M, Khan S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Acharyya K, Bhattacharyya S, Lu S, Sun Y, Mukherjee PS, Stang PJ. Emissive Platinum(II) Macrocycles as Tunable Cascade Energy Transfer Scaffolds. Angew Chem Int Ed Engl 2022; 61:e202200715. [PMID: 35107874 DOI: 10.1002/anie.202200715] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/20/2022]
Abstract
Developing artificial light-harvesting scaffolds with a cascade energy transfer process is significant for better understanding of photosynthesis. Here, we report [3+3] self-assembled PtII fluorescent macrocycles (3 a and 3 b) as light-harvesting platforms with cascade energy transfer. The PtII macrocycles aggregate into nanospheres and show emission-enhancement characteristics upon increasing water content in acetone medium. These aggregates (3aa and 3ba ) serve as energy donors when mixed with the hydrophobic dye Eosin-Y (ESY). In the presence of a second dye, Nile Red (NiR), an unusual sequential two-step energy transfer takes place from the macrocycles to NiR. In this case, ESY acts as a bridge in the relay mode. Additionally, a unique strategy to control such an energy transfer process by tuning the chain length of the alkyl group attached to the periphery of the macrocycles is demonstrated.
Collapse
Affiliation(s)
- Koushik Acharyya
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Acharyya K, Bhattacharyya S, Lu S, Sun Y, Mukherjee PS, Stang PJ. Emissive Platinum(II) Macrocycles as Tunable Cascade Energy Transfer Scaffolds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koushik Acharyya
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Shuai Lu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| | - Yan Sun
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Peter J. Stang
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| |
Collapse
|
21
|
Zhou WL, Lin W, Chen Y, Dai XY, Liu Z, Liu Y. Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water. Chem Sci 2022; 13:573-579. [PMID: 35126989 PMCID: PMC8730196 DOI: 10.1039/d1sc05861d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Multivalent supramolecular assemblies have recently attracted extensive attention in the applications of soft materials and cell imaging. Here, we report a novel multivalent supramolecular assembly constructed from 4-(4-bromophenyl)pyridine-1-ium bromide modified hyaluronic acid (HABr), cucurbit[8]uril (CB[8]) and laponite® clay (LP), which could emit purely organic room-temperature phosphorescence (RTP) with a phosphorescence lifetime of up to 4.79 ms in aqueous solution via multivalent supramolecular interactions. By doping the organic dyes rhodamine B (RhB) or sulfonated rhodamine 101 (SR101) into the HABr/CB[8]/LP assembly, phosphorescence energy transfer was realized with high transfer efficiency (energy transfer efficiency = 73–80%) and ultrahigh antenna effect (antenna effect value = 308–362) within the phosphorescent light harvesting system. Moreover, owing to the dynamic nature of the noncovalent interactions, a wide-range spectrum of phosphorescence energy transfer outputs could be obtained not only in water but also on filter paper and a glass plate by adjusting the donor–acceptor ratio and, importantly, white-light emission was obtained, which could be used in the application of information encryption. An ultralong lifetime supramolecular assembly was constructed via multivalent supramolecular interactions and achieved phosphorescence light harvesting. Multicolor (including white) broad-spectrum outputs could be achieved in water and also on filter paper and a glass plate.![]()
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University People's Republic of China .,College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Inner Mongolia Minzu University Tongliao 028000 People's Republic of China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University People's Republic of China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University People's Republic of China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University People's Republic of China
| | - Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University People's Republic of China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University People's Republic of China
| |
Collapse
|
22
|
Liu L, Lu XY, Zhang ML, Ren YX, Wang J, Yang XG. 2D MOF nanosheets as an artificial light-harvesting system with enhanced photoelectric switching performance. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00404f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis, structure and photophysical properties of a novel well-defined layered metal-organic framework (MOF) [Cd(ppda)(mbib)] by the selection of two flexible ligands 1,4-phenylenediacetic acid (ppda) and 1,3-bis(imidazol-1-ylmethyl)benzene...
Collapse
|
23
|
Zhang F, Xie H, Guo B, Zhu C, Xu J. AIE-active macromolecules: designs, performances, and applications. Polym Chem 2022. [DOI: 10.1039/d1py01167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aggregation-induced emission (AIE) macromolecules as emerging luminescent materials gained increasing attention owing to their good processability, high brightness, wide functionality, and smart responsiveness, with great potential in many fields.
Collapse
Affiliation(s)
- Fei Zhang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technolog, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
24
|
Yu SB, Lin F, Tian J, Yu J, Zhang DW, Li ZT. Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chem Soc Rev 2021; 51:434-449. [PMID: 34931205 DOI: 10.1039/d1cs00862e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porous organic polymers (POPs) have attracted increasing attention and emerged as a new research area in polymer chemistry. During the past decade, the intense desirability for application in aqueous scenarios has spawned the development of a specific class of POPs, i.e., water-soluble or dispersible porous organic polymers (WS-POPs) that can allow the implementation of porosity-based functions in aqueous media. In this Tutorial Review, aiming at providing a practical guide to this area, we will discuss recent advances in the preparation of WS-POPs through covalent/dynamic covalent, coordination and supramolecular approaches. As a result of their intrinsic and well-defined porosity, diverse topological architectures as well as unique water-processable features, many water-soluble/dispersible POPs have been demonstrated to exhibit potential for various applications, which include drug, DNA and protein delivery, bioimaging, photocatalysis, explosive detection and membrane separation. We will also highlight the related function of the representative structures. Finally, we provide our perspective for the future research, with a focus on the development of new structures and biofunctions.
Collapse
Affiliation(s)
- Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Junlai Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China. .,Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
25
|
Li XL, Wang Y, Song A, Zhang MH, Jiang M, Liu H, Wang R, Yu S, Xing LB. The construction of an artificial light-harvesting system with two-step sequential energy transfer based on supramolecular polymers. SOFT MATTER 2021; 17:9871-9875. [PMID: 34724526 DOI: 10.1039/d1sm01165k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An artificial light-harvesting system with two-step sequential energy transfer was constructed in aqueous media based on cyano-substituted p-phenylenevinylene derivative (PPTA) and bis-(p-sulfonatocalix[4]arenes) (BSC4) supramolecular polymers formed through host-guest interactions, in which two different fluorescent dyes, eosin Y (EY) and sulforhodamine (SR101), were employed as energy acceptors. The obtained artificial light-harvesting system can achieve an efficient two-step energy transfer process from PPTA-BSC4 to EY and then to SR101 with high energy-transfer efficiencies of up to 36.6% and 40.8%, respectively. More importantly, the harvested energy from the PPTA-BSC4 + EY + SR101 system can be used to promote the dehalogenation of α-bromoacetophenone with a yield of 89% in aqueous solution.
Collapse
Affiliation(s)
- Xing-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ao Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ming-Hui Zhang
- Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Man Jiang
- Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
26
|
Aggregation-induced emission and self-assembly of functional tetraphenylethene-based tetracationic dicyclophanes for selective detection of ATP in water. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Xiao T, Shen Y, Bao C, Diao K, Ren D, Qian H, Zhang L. Efficient artificial light-harvesting system constructed from supramolecular polymers with AIE property. RSC Adv 2021; 11:30041-30045. [PMID: 35480273 PMCID: PMC9041127 DOI: 10.1039/d1ra06239e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Supramolecular luminescent materials in water have attracted much interest due to their excellent tunability, multi-color emission, and environment-friendly behavior. However, hydrophobic chromophores are often affected by poor solubility and aggregation-caused quenching effects in aqueous media. Herein, we report a water-phase artificial light-harvesting system based on an AIE-type supramolecular polymer. Specifically, dispersed nanoparticles in water were prepared from an AIE chromophore-bridged ditopic ureidopyrimidinone (M) based supramolecular polymer with the assistance of surfactants. By co-assembling the hydrophobic chromophores NDI as energy acceptor into the nanocarriers, artificial light-harvesting systems (M-NDI) could be successfully constructed, exhibiting efficient energy transfer and high antenna effects. Furthermore, the spectral emission of the system could be continuously tuned with a relatively small number of acceptors. This work develops an efficient supramolecular light-harvesting system in water, which has potential applications in dynamic luminescent materials.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Yong Shen
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Cheng Bao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Kai Diao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Dongxing Ren
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hongwei Qian
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Liangliang Zhang
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| |
Collapse
|
28
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
29
|
Li X, Wang Y, Song A, Zhang M, Chen M, Jiang M, Yu S, Wang R, Xing L. An Artificial
Light‐Harvesting
System with Tunable Fluorescence Color in Aqueous Sodium Dodecyl Sulfonate Micellar Systems for Photochemical Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinglong Li
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Ying Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Ao Song
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Minghui Zhang
- Resources and Environmental Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Mengning Chen
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Man Jiang
- Resources and Environmental Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Lingbao Xing
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 China
| |
Collapse
|
30
|
Chang XH, Qin WJ, Zhang XY, Jin X, Yang XG, Dou CX, Ma LF. Angle-Dependent Polarized Emission and Photoelectron Performance of Dye-Encapsulated Metal-Organic Framework. Inorg Chem 2021; 60:10109-10113. [PMID: 34184871 DOI: 10.1021/acs.inorgchem.1c01541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecule-based crystalline materials with angle-dependent polarized emission have attracted considerable attention owing to their extensive applications in displays and anticounterfeiting. Herein, one anionic metal-organic framework (MOF) {[Zn2.5(μ3-OH)(NDC)2(HNDC)](HPIM)}n was constructed on the basis of an excellent photoactive ligand naphthalene-1,4-dicarboxylic acid (H2NDC). The protonated 2-propylimidazole (HPIM) guests residing in the nanochannels of MOF can be exchanged by a D-π-A cationic dye. The resulted host-guest system shows a rare example of ratiometric fluorescent polarizations and highly enhanced photoelectron performance in comparison with the pristine MOF.
Collapse
Affiliation(s)
- Xin-Hong Chang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Wen-Jing Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xin-Ya Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xue Jin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Chang-Xun Dou
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
31
|
Goodlett DW, Sindt AJ, Hossain MS, Merugu R, Smith MD, Garashchuk S, Gudmundsdottir AD, Shimizu LS. From Incident Light to Persistent and Regenerable Radicals of Urea-Assembled Benzophenone Frameworks: A Structural Investigation. J Phys Chem A 2021; 125:1336-1344. [PMID: 33534579 DOI: 10.1021/acs.jpca.0c08953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we probe the effects of crystalline structure and geometry on benzophenone photophysics, self-quenching, and the regenerable formation of persistent triplet radical pairs at room temperature. Radical pairs are not observed in solution but appear via an emergent pathway within the solid-state assembly. Single crystal X-ray diffraction (SC-XRD) of two sets of constitutional isomers, benzophenone bis-urea macrocycles, and methylene urea-tethered dibenzophenones are compared. Upon irradiation with 365 nm light-emitting diodes (LEDs), each forms photogenerated radicals as monitored by electron paramagnetic resonance (EPR). Once generated, the radicals exhibit half-lives from 2 to 60 days before returning to starting material without degradation. Re-exposure to light regenerates the radicals with similar efficiency. Subtle differences in the structure of the crystalline frameworks modulates the maximum concentration of photogenerated radicals, phosphorescence quantum efficiency (φ), and n-type self-quenching as observed using laser flash photolysis (LFP). These studies along with the electronic structure analysis based on the time-dependent density functional theory (TD-DFT) suggest the microenvironment surrounding benzophenone largely dictates the favorability of self-quenching or radical formation and affords insights into structure/function correlations. Advances in understanding how structure determines the excited state pathway solid-state materials undertake will aid in the design of new radical initiators, components of OLEDs, and NMR polarizing agents.
Collapse
Affiliation(s)
- Dustin W Goodlett
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ammon J Sindt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Muhammad Saddam Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Rajkumar Merugu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna D Gudmundsdottir
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
32
|
Highly efficient artificial light-harvesting systems constructed in aqueous solution for supramolecular photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
33
|
Zhang D, Yu W, Li S, Xia Y, Li X, Li Y, Yi T. Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis. J Am Chem Soc 2021; 143:1313-1317. [DOI: 10.1021/jacs.0c12522] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Suwan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianying Li
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiran Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Zhang D, Zhao J, Cao L, Yang D, Chen B, Yu L, Yang XJ, Wu B. Stepwise enhancement of fluorescence induced by anion coordination and non-covalent interactions. Dalton Trans 2021; 50:76-80. [PMID: 33331838 DOI: 10.1039/d0dt03788e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-level regulation of fluorescence enhancement upon anion coordination and subsequent binding of a guest (methyl viologen) was presented by a bis-bis(urea)-decorated tetraphenylethene (TPE) ligand with an assembly-enhanced emission characteristic.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhu L, Zhu B, Luo J, Liu B. Design and Property Modulation of Metal–Organic Frameworks with Aggregation-Induced Emission. ACS MATERIALS LETTERS 2021; 3:77-89. [DOI: 10.1021/acsmaterialslett.0c00477] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Longyi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
36
|
Zhang Q, Zhang YM, Yao H, Wei TB, Shi B, Lin Q. Supramolecular AIE polymer-based rare earth metallogels for the selective detection and high efficiency removal of cyanide and perchlorate. Polym Chem 2021. [DOI: 10.1039/d0py01630f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel supramolecular AIE polymer-based rare earth metallogels (PT-GEu and PT-GTb) have been rationally designed and synthesized for the efficient detection and removal of cyanide (CN−) and perchlorate (ClO4−).
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - You-Ming Zhang
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Bingbing Shi
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
37
|
Guan S, Pickl T, Jandl C, Schuchmann L, Zhou X, Altmann PJ, Pöthig A. Triazolate-based pillarplexes: shape-adaptive metallocavitands via rim modification of macrocyclic ligands. Org Chem Front 2021. [DOI: 10.1039/d1qo00588j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rim-modified pillarplexes are prepared by a macrocycle-templated synthesis strategy. They exhibit a shape-adaptive behaviour and complementary H-bonding, showing that rim modification can modulate the flexibility and functionality of the cavitand.
Collapse
Affiliation(s)
- Shengyang Guan
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Thomas Pickl
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Christian Jandl
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Leon Schuchmann
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Xiaoyu Zhou
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Philipp J. Altmann
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Alexander Pöthig
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| |
Collapse
|
38
|
Xiao T, Wu H, Sun G, Diao K, Wei X, Li ZY, Sun XQ, Wang L. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Chem Commun (Camb) 2020; 56:12021-12024. [PMID: 32901631 DOI: 10.1039/d0cc05077f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aid of CTAB amphiphile, water-phase artificial light-harvesting systems were fabricated as nanoparticles by the self-assembly of two low-molecular-weight organic molecules: a UPy-functionalized TPE derivative 1 with both supramolecular polymerization and AIE capabilities as a donor and a fluorescent chromophore NiR as an acceptor. Owing to the flexibility of supramolecular self-assembly, tunable emissions including white-light emission could be easily realized with high energy transfer efficiency and the antenna effect.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | | | | | |
Collapse
|