1
|
Sweers ME, Liu TC, Shen J, Lu B, Freeland JW, Wolverton C, Gonzalez Aviles GB, Seitz LC. Synthesis and symmetry of perovskite oxynitride CaW(O,N) 3. MATERIALS HORIZONS 2024; 11:4104-4114. [PMID: 38836833 DOI: 10.1039/d4mh00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Perovskite oxynitrides, in addition to being promising electrocatalysts and photoabsorbers, present an interesting case study in crystal symmetry. Full or partial ordering of the O and N anions affects global symmetry and influences material performance and functionality; however, anion ordering is challenging to detect experimentally. In this work, we synthesize a novel perovskite oxynitride CaW(O,N)3 and characterize its crystal structure using both X-ray and neutron diffraction. Through co-refinement of the diffraction patterns with a range of literature and theory-derived model structures, we demonstrate that CaW(O,N)3 adopts an orthorhombic Pnma average structure and exhibits octahedral distortion with evidence for preferred anion site occupancy. However, through comparison with a large, low-symmetry unit cell, we identify the presence of disorder that is not fully accounted for by the high-symmetry model. We compare CaW(O,N)3 with SrW(O,N)3 to demonstrate the broader presence of such disorder and identify contrasting features in the electronic structures. This work signifies an updated perspective on the inherent crystal symmetry present in perovskite oxynitrides.
Collapse
Affiliation(s)
- Matthew E Sweers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tzu-Chen Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Bingzhang Lu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Linsey C Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Hojamberdiev M, Vargas R, Zhang F, Teshima K, Lerch M. Perovskite BaTaO 2 N: From Materials Synthesis to Solar Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305179. [PMID: 37852947 PMCID: PMC10667847 DOI: 10.1002/advs.202305179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Barium tantalum oxynitride (BaTaO2 N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2 N still exhibits poor water-splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2 N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin-film fabrication of BaTaO2 N. Various strategies to achieve enhanced water-splitting performance of BaTaO2 N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2 N in solar water splitting are presented.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
- Escuela de Bio y NanotecnologíasUniversidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
| | - Fuxiang Zhang
- State Key Laboratory of CatalysisiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean EnergyDalian116023P.R. China
| | - Katsuya Teshima
- Department of Materials ChemistryShinshu University4‐17‐1 WakasatoNagano3808553Japan
- Research Initiative for Supra‐MaterialsShinshu University4‐17‐1 WakasatoNagano3808553Japan
| | - Martin Lerch
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
3
|
Guo X, Liu J, Li D, Cheng H, Liu K, Liu X, Liu T. Facile construction of Z-scheme AgCl/Bi 3TaO 7 photocatalysts for effective removal of tetracycline under visible-light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62312-62324. [PMID: 36940021 DOI: 10.1007/s11356-023-26323-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
A string of AgCl/Bi3TaO7 two-component composite was synthesized by hydrothermal and deposition-precipitation process initially. The photocatalytic activities of mixed-phase AgCl/Bi3TaO7 were evaluated toward the decomposition of tetracycline (TC). Among these as-prepared materials, AgCl/Bi3TaO7 nanocomposites when the molar ratio of baked materials between AgCl and Bi3TaO7 was 1:5 presented the optimal photocatalytic quantum efficiency for TC dissociation (86.82%) with visible-light exposure, which was 1.69 and 2.38 folders higher than that of single Bi3TaO7 and AgCl, respectively. What is more, it illustrated that the photo-generated carriers were markedly isolated on account of the formation of heterojunction confirmed by EIS analysis. Meanwhile, radical trapping experiments implied that the photo-induced holes (h+), hydroxyl radical (·OH), and superoxide radical (·O2-) were the major active species. The escalated photocatalytic activity could be ascribed to the unique construction of Z-scheme AgCl/Bi3TaO7 heterojunction, which could expedite charge separation and transmission, cement light absorption capability and retain the strong redox ability of photo-generated electrons and holes. Our finding suggests that AgCl/Bi3TaO7 nanocomposites possess great potential for photocatalytic oxidation of residual TC in the wastewater effluents and the reported strategy can contribute to the development of novel high-performance photocatalyst.
Collapse
Affiliation(s)
- Xiaoxin Guo
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jun Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dan Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Hongjun Cheng
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Kankan Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Xiaoqing Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Tiansheng Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
4
|
Gill AK, Shah S, Yadav P, Shanavas A, Neelakandan PP, Patra D. A visible-light activated ROS generator multilayer film for antibacterial coatings. J Mater Chem B 2022; 10:9869-9877. [PMID: 36437801 DOI: 10.1039/d2tb01454h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The current scenario of antibiotic-resistant bacteria and pandemics caused by viruses makes research in the area of antibacterial and antiviral materials and surfaces more urgent than ever. In this regard, salicylideneimine based tetracoordinate boron-containing organic compounds are emerging as a new class of photosensitizers for singlet oxygen generation. However, the inherent inability of small organic molecules to be processed limits their potential use in functional coatings. Here we show the synthesis of a novel polymer functionalized with diiodosalicylideneimine-boron difluoride (PEI-BF2) and its utility for surface coating inside glass vials via layer-by-layer (LbL) assembly. The multilayer thin films are characterized using AFM and UV-Vis spectroscopy and the resultant coatings display excellent stability. The multilayer coating could be activated using visible light, and owing to the photocatalytic activity of the incorporated PEI-BF2, the surface coating is able to generate singlet oxygen efficiently upon light irradiation. Further, the multilayer coated surfaces exhibit remarkable antimicrobial activity towards both Gram-positive and Gram-negative bacteria under a variety of conditions. Thus, owing to the simple synthesis and the convenient methodology adopted for the preparation of multilayer coatings, the material reported here could pave the way for the development of sunlight activated large area self-sterile surfaces.
Collapse
Affiliation(s)
- Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India. .,Centre for Nanoscience and Nanotechnology, Panjab University, Sector-25, Chandigarh - 160036, India
| | - Sanchita Shah
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Pranjali Yadav
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Debabrata Patra
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| |
Collapse
|
5
|
Guan C, Hou T, Nie W, Zhang Q, Duan L, Zhao X. Facet synergy dominant Z-scheme transition in BiOCl with enhanced 1O 2 generation. CHEMOSPHERE 2022; 307:135663. [PMID: 35835240 DOI: 10.1016/j.chemosphere.2022.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye and mechanism of photocatalytic for obtained samples were investigated. Relevant characterization demonstrated that facet synergy was a main reason of photocatalytic performance promotion due to changed facet exposure and proportion under self-assembling. Theory and experimental analysis manifested that synergistic facet stimulated Z scheme transition in samples with lower (001) facet proportion, which provided favorable condition of 1O2 generation and simultaneously generated prominent charge separation. This work unveiled the facet synergy dominant photocatalytic performance improvement in self-assembling system of BiOCl and verified decisive role of facet proportion in constructing Z-scheme facet junction, which also prompted possibility of improving 1O2 generation through facet engineering under self-assembling.
Collapse
Affiliation(s)
- Chongshang Guan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Tian Hou
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Wuyang Nie
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qian Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Libing Duan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaoru Zhao
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
6
|
Gayle AJ, Lenef JD, Huff PA, Wang J, Fu F, Dadheech G, Dasgupta NP. Visible-Light-Driven Photocatalysts for Self-Cleaning Transparent Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11641-11649. [PMID: 36095297 DOI: 10.1021/acs.langmuir.2c01455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Highly transparent photocatalytic self-cleaning surfaces capable of harvesting near-visible (365-430 nm) photons were synthesized and characterized. This helps to address a current research gap in self-cleaning surfaces, in which photocatalytic coatings that exhibit activity at wavelengths longer than ultraviolet (UV) generally have poor optical transparency, because of broadband scattering and the attenuation of visible light. In this work, the wavelength-dependent photocatalytic activity of Pt-modified TiO2 (Pt-TiO2) particles was characterized, which exhibited activity for wavelengths up to 430 nm. Pt-TiO2 nanoparticles were embedded in a mesoporous SiO2 sol-gel matrix, forming a superhydrophilic surface that allowed for water adsorption and formation of reactive oxide species upon illumination, resulting in the removal of organic surface contaminants. These self-cleaning surfaces only interact strongly with near-visible light (∼365-430 nm), as characterized by photocatalytic self-cleaning tests. Broadband visible transparency was preserved by generating a morphology composed of small clusters of Pt-TiO2 surrounded by a matrix of SiO2, which limited diffuse visible light scattering and attenuation. The wavelength-dependent self-cleaning rate by the films was quantified using stearic acid degradation under both monochromatic and AM1.5G spectral illumination. By varying the film morphology, the average transmittance relative to bare glass can be tuned from ∼93%-99%, and the self-cleaning rate can be adjusted by more than an order of magnitude. Overall, the ability to utilize photocatalysts with tunable visible light activity, while maintaining broadband transparency, can enable the use of photocatalytic self-cleaning surfaces for applications where UV illumination is limited, such as touchscreen displays.
Collapse
Affiliation(s)
- Andrew J Gayle
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julia D Lenef
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Park A Huff
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fenghe Fu
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gayatri Dadheech
- General Motors Technical Center, Warren, Michigan 48093, United States
| | - Neil P Dasgupta
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Lyu S, Younis MA, Liu Z, Zeng L, Peng X, Yang B, Li Z, Lei L, Hou Y. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Chang S, Yu J, Wang R, Fu Q, Xu X. LaTaON 2 Mesoporous Single Crystals for Efficient Photocatalytic Water Oxidation and Z-Scheme Overall Water Splitting. ACS NANO 2021; 15:18153-18162. [PMID: 34677058 DOI: 10.1021/acsnano.1c06871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
LaTaON2 porous single crystals (PSCs), integrating structural coherence and porous microstructures, will warrant promising photocatalytic performance. The absence of grain boundaries in PSCs ensures rapid photocarrier transportation from bulk to the surface, thereby mitigating photocarriers' recombination. Porous microstructures not only provide ample reachable surface to host photochemical reactions but also reinforce photon-matter interactions by additional photon reflection/scattering. Here, we have synthesized LaTaON2 PSCs via a topotactic route and show significantly improved photocatalytic performance. Efficient water oxidation into O2 has been realized by LaTaON2 PSCs with an apparent quantum efficiency as high as 5.7% at 420 ± 20 nm. Stable overall water splitting into stoichiometric H2 and O2 has also been achieved in a Z-scheme setup using LaTaON2 PSCs as the O2 evolution photocatalyst. These results not only prove that PSCs facilitate photocarrier migrations, which in turn deliver exceptional photocatalytic performance, but also imply that PSCs are useful to reinvigorate conventional semiconductor photocatalysts toward efficient solar energy conversions.
Collapse
Affiliation(s)
- Shufang Chang
- Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jinxing Yu
- Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ran Wang
- Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qingyang Fu
- Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoxiang Xu
- Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
9
|
Wang W, Jiang H, Li L, Li G. Two-dimensional group-III nitrides and devices: a critical review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:086501. [PMID: 34229312 DOI: 10.1088/1361-6633/ac11c4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
As third-generation semiconductors, group-III nitrides are promising for high power electronic and optoelectronic devices because of their wide bandgap, high electron saturation mobility, and other unique properties. Inspired by the thickness-dependent properties of two-dimensional (2D) materials represented by graphene, it is predicted that the 2D counterparts of group-III nitrides would have similar properties. However, the preparation of 2D group-III nitride-based materials and devices is limited by the large lattice mismatch in heteroepitaxy and the low rate of lateral migration, as well as the unsaturated dangling bonds on the surfaces of group-III nitrides. The present review focuses on theoretical and experimental studies on 2D group-III nitride materials and devices. Various properties of 2D group-III nitrides determined using simulations and theoretical calculations are outlined. Moreover, the breakthroughs in their synthesis methods and their underlying physical mechanisms are detailed. Furthermore, devices based on 2D group-III nitrides are discussed accordingly. Based on recent progress, the prospect for the further development of the 2D group-III nitride materials and devices is speculated. This review provides a comprehensive understanding of 2D group-III nitride materials, aiming to promote the further development of the related fields of nano-electronic and nano-optoelectronics.
Collapse
Affiliation(s)
- Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong Special Administrative Region of China
| | - Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Linhao Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
10
|
Wang M, Xu H, Huang C, Cui Z, Li M, Song B, Shao G, Wang H, Lu H, Zhang R. Preparation of g-C3N4/diatomite composite with improved visible light photocatalytic activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ma Z, Piętak K, Piątek J, Reed DeMoulpied J, Rokicińska A, Kuśtrowski P, Dronskowski R, Zlotnik S, Coridan RH, Slabon A. Semi-transparent quaternary oxynitride photoanodes on GaN underlayers. Chem Commun (Camb) 2020; 56:13193-13196. [PMID: 33021615 DOI: 10.1039/d0cc04894a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Conformal atomic layer deposition (ALD) technique is employed to make semi-transparent TaOxNy, providing the possibility to build semi-transparent oxy(nitride) heterojunction photoanodes on conductive substrates. A generalized approach was developed to manufacture semi-transparent quaternary metal oxynitrides on conductive substrates beyond semi-transparent binary Ta3N5 photoanodes aiming for wireless tandem photoelectrochemical (PEC) cells.
Collapse
Affiliation(s)
- Zili Ma
- Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|