1
|
Tu J, Liu Q, You S, Meng Z, Fang S, Yu B, Chen X, Zhou Y, Zeng L, Herrmann A, Chen G, Shen J, Zheng L, Ji J. Recombinant supercharged polypeptides for safe and efficient heparin neutralization. Biomater Sci 2023; 11:5533-5539. [PMID: 37395046 DOI: 10.1039/d3bm00628j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heparin is a widely used anticoagulant agent in the clinic. After application, its anticoagulant effect must be reversed to prevent potential side effects. Protamine sulfate (PS) is the only clinically licensed antidote that has been used for this purpose in the last 80 years, which, however, provokes severe adverse effects, such as systemic hypotension and even death. Herein, we demonstrate the potential of supercharged polypeptides as a promising alternative for protamine sulfate. A series of supercharged polypeptides with multiple positive charges was recombinantly produced, and the heparin-neutralizing performance of the polypeptides was evaluated in comparison with PS. It was found that increasing the number of charges significantly enhanced the ability to neutralize heparin and resist the screening effect induced by salt. In particular, the polypeptide bearing 72 charges (K72) exhibited an excellent heparin-neutralizing behavior that was comparable to that of PS. Further in vivo studies revealed that the heparin-triggered bleeding was almost completely alleviated by K72 while a negligible toxic effect was observed. Therefore, such recombinant supercharged polypeptides might replace protamine sulfate as heparin-reversal agents.
Collapse
Affiliation(s)
- Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shengye You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Binhong Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Xumin Chen
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lulu Zeng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Faruque MRJ, Cukkemane N, Fu C, Nazmi K, Laine ML, Bikker FJ. Identification and Characterization of MUC5B Binding Peptides by Phage Display. Arch Oral Biol 2023; 147:105624. [PMID: 36701953 DOI: 10.1016/j.archoralbio.2023.105624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES MUC5B plays a multifactorial role in oral health. As a consequence, decreased MUC5B output leads to impaired salivary functions and xerostomia. Synthetic combinatorial technologies have been used to develop functional peptide libraries by phage display e.g. for therapeutic purposes. In this light, our primary aim was to identify peptide sequences with specific selectivity for salivary MUC5B in vitro using phage display. Our secondary aims were to analyze their effect on salivary spinnbarkeit in situ and their effect on acid-induced demineralization in vitro. METHODS MUC5B binding phages were selected by phage display. Peptide affinity to MUC5B was evaluated using MUC5B coated hydroxyapatite (HA) granules. The MUC5B binding peptides (MBPs) were then examined for their effects on salivary spinnbarkeit and protective effect on acid-induced demineralization in vitro. A competitive ELISA was performed to identify the binding epitope on MUC5B using F2, a MUC5B specific antibody. RESULTS MBP-12 and MBP-14 displayed the highest affinity to MUC5B. MBP-12 mildly stabilized the spinnbarkeit of serous saliva after overnight incubation and of mucous saliva at all timepoints tested. The addition of MBP-12 to a pellicle of unstimulated saliva on HA discs showed no additive protective effect against acid-induced demineralization. Epitope characterization suggested sulfo-Lewisa SO3-3Gal_1-3GlcNAc (galactose residue) as MBP-12 binding site on MUC5B. CONCLUSIONS The use of phage display in generating MBPs was successful. Characterization of the MBPs revealed a mild effect on spinnbarkeit in case of mucous saliva. Possibly, combinatorial peptide libraries might contribute to the development of novel formulations to treat xerostomia.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Oral bio-interfaces: Properties and functional roles of salivary multilayer in food oral processing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Lin C, Huang Z, Wu T, Xu W, Zhao R, Zhou X, Xu Z. Catechol-modified chitosan hydrogel containing PLGA microspheres loaded with triclosan and chlorhexidine: a sustained-release antibacterial system for urinary catheters. Pharm Dev Technol 2022; 27:545-553. [DOI: 10.1080/10837450.2022.2086571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Zhengyu Huang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Ruifang Zhao
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Zhibiao Xu
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
5
|
|
6
|
Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, Wang W. A review of advances in tribology in 2020–2021. FRICTION 2022; 10:1443-1595. [PMCID: PMC9552739 DOI: 10.1007/s40544-022-0685-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 07/22/2023]
Abstract
Around 1,000 peer-reviewed papers were selected from 3,450 articles published during 2020–2021, and reviewed as the representative advances in tribology research worldwide. The survey highlights the development in lubrication, wear and surface engineering, biotribology, high temperature tribology, and computational tribology, providing a show window of the achievements of recent fundamental and application researches in the field of tribology.
Collapse
Affiliation(s)
- Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Jun Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Zhongmin Jin
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Braham Prakash
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Tianbao Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Wenzhong Wang
- School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, 100082 China
| |
Collapse
|
7
|
Assy Z, Bikker FJ, Mashhour E, Asadi M, Brand HS. Preferences of Sjögren's syndrome patients regarding potential new saliva substitutes. Clin Oral Investig 2022; 26:6245-6252. [PMID: 35688954 PMCID: PMC9525427 DOI: 10.1007/s00784-022-04576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SS) patients should be involved in the development of new saliva substitutes at an early stage. The purpose of the current study was to explore the preferences of these patients regarding various product characteristics of potential new saliva substitutes. MATERIAL AND METHOD A questionnaire was distributed among SS patients. They could anonymously indicate their preferences for saliva substitute characteristics using 5-point Likert scales. RESULTS Fifty-nine SS patients filled in the questionnaire. According to their opinion, the most ideal saliva substitute has a thin-watery consistency with a neutral flavour that should be applied as a spray. Patients demand a prolonged alleviation of dry mouth complaints and neutralization of harmful bacteria. The patients mainly object against the presence of artificial sweeteners and alcohol in saliva substitutes, but have limited objections against the presence of vegetable-based ingredients and natural enzymes. Major objections were against the potential side effects "bitter taste" and "discoloration of teeth". Age and severity of xerostomia affected desire of flavours. Younger patients preferred menthol flavour, while respondents with severe xerostomia preferred the use of "neutral flavours" significantly more. CONCLUSION The most ideal saliva substitute has thin-watery consistency in spray form with a neutral flavour and providing long alleviation of dry mouth complaints. Besides, it should not contain artificial sweeteners or alcohol, and should not have a bitter taste or cause discoloration of the teeth. CLINICAL RELEVANCE Investigating the opinion of SS patients provides tailoured insights into their preference, which may contribute to the development of more effective saliva substitutes.
Collapse
Affiliation(s)
- Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Esra Mashhour
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Mina Asadi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Henk S. Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Sarkar A, Soltanahmadi S, Chen J, Stokes JR. Oral tribology: Providing insight into oral processing of food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106635] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Cartilage lamina splendens inspired nanostructured coating for biomaterial lubrication. J Colloid Interface Sci 2021; 594:435-445. [PMID: 33774399 DOI: 10.1016/j.jcis.2021.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Biomaterials that are used in biological systems, such as polycarbonate urethane (PCU) knee joint implants and contact lenses, generally lack lubrication. This limits their integration with the body and impedes their function. Here, we propose a nanostructured film based on hydrophilic polysaccharide hyaluronic acid conjugated with dopamine (HADN) and zwitterionic reduced glutathione (Glu), which forms a composite coating (HADN-Glu) to enhance the lubrication between cartilage and PCU. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine and deposited on PCU surface under mild oxidative conditions. Then, zwitterionic peptide-reduced glutathione was bioconjugated to HADN, forming a lubrication film. Analysis based on X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and wettability indicated that HADN and Glu had grafted successfully onto the PCU surface. Measurements of the coefficient of friction (COF), friction energy dissipation and cartilage roughness indicated that cartilage was effectively protected by the high lubrication of HADN-Glu. Both at low and high applied loads, this effect was likely due to the enhanced boundary lubrication enabled by HADN-Glu on the PCU surface. Moreover, HADN-Glu is highly biocompatible with chondrocyte cells, suggesting that this film will benefit the design of implants where lubrication is needed.
Collapse
|