1
|
Muthukutty B, Sathish Kumar P, Lee D, Lee S. Multichannel Carbon Nanofibers: Pioneering the Future of Energy Storage. ACS NANO 2024; 18:27287-27316. [PMID: 39324479 DOI: 10.1021/acsnano.4c11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711873, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| |
Collapse
|
2
|
Chen X, Lv H, Wu X. Electrocatalytic Mechanism and Sabatier Principle in C 2N-Supported Atomically Dispersed Catalysts for the Sulfur Reduction Reaction in Lithium-Sulfur Batteries. J Phys Chem Lett 2024:3425-3433. [PMID: 38506831 DOI: 10.1021/acs.jpclett.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The sluggish kinetics of the sulfur reduction reaction (SRR) impedes the practical application of lithium-sulfur batteries (LSBs). Electrocatalysts are necessary to expedite the conversion of polysulfides. Here, we systematically investigate the chemical mechanisms and size dependence of catalytic activities toward the SRR from Li2S4 to Li2S on single-, double-, and triple-atom catalysts supported on C2N (Mn@C2N, where M is a 3d transitional metal and n = 1-3) as model systems by using first-principles calculations and a comprehensive electrocatalytic model. Our results reveal that the adsorption strength of the LiS• intermediate is identified as an optimal descriptor for catalytic activity. M1@C2N exhibits superior stability and exceptional activity compared to those of the other two catalyst types. Cu1@C2N exhibits the lowest overpotential of 0.426 V. Li embedding or a prelithiation strategy verifies the therein Sabatier principle. This work emphasizes the precise control of the active site structure and microenvironment in catalytic SRR and offers guidance for the design of electrocatalysts for metal-sulfur batteries.
Collapse
Affiliation(s)
- Xingjia Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Jiang SJ, Wu CX, Liu R, Wang J, Xu YS, Cao FF. Multifunctional Interlayer Engineering for Silkworm Excrement-Derived Porous Carbon Enabling High-Energy Lithium Sulfur Batteries. CHEMSUSCHEM 2024; 17:e202301110. [PMID: 37653603 DOI: 10.1002/cssc.202301110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Lithium-sulfur (Li-S) batteries show advantage of high theoretical capacity. However, the shuttle effect of polysulfides and sluggish sulfur redox kinetics seriously reduce their service life. Inspired by the porous structural features of biomass materials, herein, a functional interlayer is fabricated by silkworm excrement-derived three-dimensional porous carbon accommodating nano sized CoS2 particles (SC@CoS2 ). The porous carbon delivers a high specific surface area, which provides adequate adsorption sites, being responsible for suppressing the shuttle effect of polysulfides. Meanwhile, the porous carbon is favorable for hindering the aggregation of CoS2 and maintaining its high activity during extended cycles, which effectively accelerates the polysulfides conversion kinetics. Moreover, the SC@CoS2 functional interlayer effectively limits the formation of Li dendrites and promotes the uniform deposition of Li on the Li electrode surface. As a result, the CMK-3/S cathode achieves a high initial capacity of 1599.1 mAh g-1 at 0.2 C rate assisted by the polypropylene separator coated with the functional interlayer and 1208.3 mAh g-1 is maintained after the long cycling test. This work provides an insight into the designing of long-lasting catalysts for stable functional interlayer, which encourages the application of biomass-derived porous carbon in high-energy Li-S batteries.
Collapse
Affiliation(s)
- Si-Jie Jiang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Cui-Xia Wu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Rui Liu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jun Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yan-Song Xu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Fei-Fei Cao
- College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| |
Collapse
|
4
|
Han Y, Wang M, Dong Y, Cheng Z, Li X, Yan X, Zhang Y, Zhang J. Improving performances of Lithium-Sulfur cells via regulating of VSe 2 functional mediator with Doping-Defect engineering and Electrode-Separator integration strategy. J Colloid Interface Sci 2023; 644:42-52. [PMID: 37094471 DOI: 10.1016/j.jcis.2023.04.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The sluggish redox kinetics and the severe shuttle effect of soluble lithium polysulfides (LiPSs) are the main key issues which would hinder the development of lithium-sulfur (Li-S) batteries. In this work, a nickel-doped vanadium selenide in-situ grows on reduced graphene oxide(rGO) to form a two-dimensional (2D) composite Ni-VSe2/rGO by a simple solvothermal method. When it is used as a modified separator in Li-S batteries, the Ni-VSe2/rGO material with the doped defect and super-thin layered structure can greatly adsorb LiPSs and catalyze the conversion reaction of LiPSs, resulting in effectively reducing LiPSs diffusion and suppressing the shuttle effect. More importantly, the cathode-separator bonding body is first developed as a new strategy of electrode-separator integration in Li-S batteries, which not only could decrease the LiPSs dissolution and improve the catalysis performance of the functional separator as the upper current-collector, but also is good for the high sulfur loading and the low electrolyte/sulfur (E/S) ratio for high energy density Li-S batteries. When the Ni-VSe2/rGO-PP (polypropylene, Celgard 2400) modified separator is applied, the Li-S cell can retain 510.3 mA h g-1 capacity after 1190 cycles at 0.5C. In the electrode-separator integrated system, the Li-S cell can still maintain 552.9 mA h g-1 for 190 cycles at a sulfur loading 6.4 mg cm-2 and 4.9 mA h cm-2 for 100 cycles at a sulfur loading 7.0 mg cm-2. The experimental results indicate that both the doped defect engineering and the super-thin layered structure design might optimally be chosen to fabricate a new modified separator material, and especially, the electrode-separator integration strategy would open a practical way to promote the electrochemical behavior of Li-S batteries with high sulfur loading and low E/S ratio.
Collapse
Affiliation(s)
- Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meili Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Li
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xueli Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Li Q, Liu H, Jin B, Li L, Sheng Q, Cui M, Li Y, Lang X, Zhu Y, Zhao L, Jiang Q. Anchoring polysulfides via a CoS 2/NC@1T MoS 2 modified separator for high-performance lithium–sulfur batteries. Inorg Chem Front 2023. [DOI: 10.1039/d2qi01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CoS2/NC@1T MoS2 synthesized by a one-step hydrothermal method forms a unique hierarchical configuration with simultaneous internal and external modifications. A lithium–sulfur battery with a CoS2/NC@1T MoS2-PP separator shows superior cycling performance.
Collapse
Affiliation(s)
- Qicheng Li
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Hui Liu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lei Li
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qidong Sheng
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Mengyang Cui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yiyang Li
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lijun Zhao
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
6
|
Zhang CY, Zhang C, Sun GW, Pan JL, Gong L, Sun GZ, Biendicho JJ, Balcells L, Fan XL, Morante JR, Zhou JY, Cabot A. Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium‐Sulfur Batteries under External Magnetic Field. Angew Chem Int Ed Engl 2022; 61:e202211570. [DOI: 10.1002/anie.202211570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yue Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Chaoqi Zhang
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Guo Wen Sun
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Jiang Long Pan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Li Gong
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Geng Zhi Sun
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Jordi Jacas Biendicho
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Lluís Balcells
- Institut de Ciència de Materials de Barcelona Campus de la UAB 08193 Bellaterra Catalonia Spain
| | - Xiao Long Fan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Joan Ramon Morante
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Jin Yuan Zhou
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
- School of Physics and Electronic Information Engineering Qinghai Normal University Xining 810008 China
| | - Andreu Cabot
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
- Catalan Institution for Research and Advanced Studies, ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
7
|
Guan H, Dong Y, Kang X, Han Y, Cheng Z, Han L, Xie L, Chen W, Zhang J. Extraordinary electrochemical performance of lithium–sulfur battery with 2D ultrathin BiOBr/rGO sheet as an efficient sulfur host. J Colloid Interface Sci 2022; 626:374-383. [DOI: 10.1016/j.jcis.2022.06.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
|
8
|
Zhou L, Danilov DL, Qiao F, Eichel RA, Notten PH. ZnFe2O4 hollow rods enabling accelerated polysulfide conversion for advanced lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Kang X, Dong Y, Guan H, Al-Tahan MA, Zhang J. Manipulating the electrocatalytic activity of sulfur cathode via distinct cobalt sulfides as sulfur host materials in lithium-sulfur batteries. J Colloid Interface Sci 2022; 622:515-525. [PMID: 35525150 DOI: 10.1016/j.jcis.2022.04.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023]
Abstract
For the better development of lithium-sulfur (Li-S) batteries, it is necessary to fabricate sulfur hosts with cheap, rapid sulfur reaction dynamic and inhibiting the shuttling effect of lithium polysulfides (LiPSs). Herein, four hollow cubic materials with two kinds of nitrogen-doped carbon derived from Prussian blue analogues (PBA) precursor, Co9S8/MnS/NC@NC-400, CoS2/MnS/NC@NC-500, CoS1.097/MnS/NC@NC-600 and CoS1.097/MnS/NC@NC-700, are reported when the vulcanization temperatures are regulated at 400 °C, 500 °C, 600 °C and 700 °C, respectively. Among them, Co9S8/MnS/NC@NC-400, CoS2/MnS/NC@NC-500 and CoS1.097/MnS/NC@NC-600 have the similar hollow cubic structure, which can physically confine the LiPSs's shuttle, however, the Co vacancies of CoS1.097 in the CoS1.097/MnS/NC@NC-600 can promote the rearrangement of surface electrons, which is beneficial to the diffusion of Li+/e-, improving the electrochemical reaction kinetics. As for the CoS1.097/MnS/NC@NC-700 with the same substance but almost collapsed structure, the CoS1.097/MnS/NC@NC-600 can accommodate the volume expansion of sulfur conversion. In the four sulfur-host materials, the CoS1.097/MnS/NC@NC-600 not only displays the outstanding adsorption ability on LiPSs, but also presents the best electrocatalytic activity in the Li2S potentiostatic deposition experiments and active sulfur reduction/oxidation conversion reactions, greatly promoting the electrochemical performances of Li-S batteries. The S@CoS1.097/MnS/NC@NC-600 cathode can deliver 1010.2 mA h g-1 at 0.5 C and maintain 651.1 mA h g-1 after 200 cycles. In addition, the in-situ X-ray diffraction (in-situ XRD) test reveals that the sulfur conversion mechanism is the processes of the α-S8 → Li2S → β-S8 (first cycle), then β-S8 ↔ Li2S during the subsequent cycles. Based on the fundamental understanding of the design and preparation of CoxSy/MnS/NC@NC hosts with the desired adsorption and catalysis functions, the work can provide new insights and reveal the defect-engineering to develop the advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiyang Kang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Hui Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mohammed A Al-Tahan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
10
|
Hollow carbon spheres loaded with NiSe 2 nanoplates as multifunctional SeS 2 hosts for Li-SeS 2 batteries. J Colloid Interface Sci 2022; 608:2760-2767. [PMID: 34785051 DOI: 10.1016/j.jcis.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
Selenium sulfide as a new alternative cathode material can effectively address the inferior electronic conductivity of sulfur, which is the main cause for poor electrochemical reactivity of conventional lithium-sulfur batteries (Li-S batteries). Therefore, in this work, hollow carbon spheres loaded with NiSe2 nanoplates were prepared as SeS2 hosts for Li-SeS2 batteries. The unique micro-mesoporous hollow carbon spheres not only provide channels for the diffusion of SeS2, but also afford spaces for alleviating the volume expansion of the active substance. Besides, the external polar NiSe2 nanoplates increase active sites for capturing polysulfides or polyselenides during the charge/discharge process. Meanwhile, the excellent electronic conductivity of NiSe2 can accelerate the catalytic reaction on the surface, thus reducing the loss of soluble intermediate products and finally suppressing the "shuttle effect". These extraordinary features of the as-proposed cathode offer many superiorities in electrochemical performances in terms of a high initial discharge capacity of 1139 mA h g-1 at a current rate of 0.1C and an excellent cycling life of up to 1000 cycles at 1C.
Collapse
|
11
|
Wu L, Yu Y, Dai Y, Zhao Y, Zeng W, Liao B, Pang H. Multisize CoS 2 Particles Intercalated/Coated-Montmorillonite as Efficient Sulfur Host for High-Performance Lithium-Sulfur Batteries. CHEMSUSCHEM 2022; 15:e202101991. [PMID: 34664405 DOI: 10.1002/cssc.202101991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The chemisorption and catalysis of lithium polysulfides (LiPSs) are effective strategies to suppress the shuttle effect in lithium-sulfur (Li-S) batteries. Herein, multisize CoS2 particles intercalated/coated-montmorillonite (MMT) as an efficient sulfur host is synthesized. As expected, the obtained S/CoS2 @MMT cathode achieves an absorption-catalysis synergistic effect through the polar MMT aluminosilicate sheets and the well-dispersed nano-micron CoS2 particles. Furthermore, efficient interlamellar ion pathways and interconnected conductive network are constructed within the composite host due to the intercalation/coating of CoS2 in/on MMT. Therefore, the S/CoS2 @MMT cathode achieves an outstanding rate performance up to 5C (∼548 mAh g-1 ) and a high cycling stability with low capacity decay of 0.063 and 0.067 % per cycle for 500 cycles at 1C and 2C, respectively. With a higher sulfur loading of 4.0 mg cm-2 , the cathode still delivers satisfactory rate and cycling performance. It shows that the CoS2 @MMT host has great application prospects in Li-S batteries.
Collapse
Affiliation(s)
- Lian Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yongqiang Dai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Wei Zeng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Bing Liao
- Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, P. R. China
| | - Hao Pang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| |
Collapse
|
12
|
Xu J, Yang L, Cao S, Wang J, Ma Y, Zhang J, Lu X. Sandwiched Cathodes Assembled from CoS 2 -Modified Carbon Clothes for High-Performance Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101019. [PMID: 34075724 PMCID: PMC8373102 DOI: 10.1002/advs.202101019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Indexed: 05/06/2023]
Abstract
Structural design of advanced cathodes is a promising strategy to suppress the shuttle effect for lithium-sulfur batteries (LSBs). In this work, the carbon cloth covered with CoS2 nanoparticles (CC-CoS2 ) is prepared to function as both three-dimensional (3D) current collector and physicochemical barrier to retard migration of soluble lithium polysulfides. On the one hand, the CC-CoS2 film works as a robust 3D current collector and host with high conductivity, high sulfur loading, and high capability of capturing polysulfides. On the other hand, the 3D porous CC-CoS2 film serves as a multifunctional interlayer that exhibits efficient physical blocking, strong chemisorption, and fast catalytic redox reaction kinetics toward soluble polysulfides. Consequently, the Al@S/AB@CC-CoS2 cell with a sulfur loading of 1.2 mg cm-2 exhibits a high rate capability (≈823 mAh g-1 at 4 C) and delivers excellent capacity retention (a decay of ≈0.021% per cycle for 1000 cycles at 4 C). Moreover, the sandwiched cathode of CC-CoS2 @S/AB@CC-CoS2 is designed for high sulfur loading LSBs. The CC-CoS2 @S/AB@CC-CoS2 cells with sulfur loadings of 4.2 and 6.1 mg cm-2 deliver high reversible capacities of 1106 and 885 mAh g-1 , respectively, after 100 cycles at 0.2 C. The outstanding electrochemical performance is attributed to the sandwiched structure with active catalytic component.
Collapse
Affiliation(s)
- Jun Xu
- School of MicroelectronicsHefei University of TechnologyHefei230009P. R. China
| | - Likun Yang
- School of MicroelectronicsHefei University of TechnologyHefei230009P. R. China
| | - Shoufu Cao
- School of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Jingwen Wang
- School of MicroelectronicsHefei University of TechnologyHefei230009P. R. China
| | - Yuanming Ma
- School of MicroelectronicsHefei University of TechnologyHefei230009P. R. China
| | - Junjun Zhang
- School of Physics and Materials EngineeringHefei Normal UniversityHefei230601P.R. China
| | - Xiaoqing Lu
- School of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| |
Collapse
|
13
|
Ren Z, Zhao Z, Zhang K, Wang X, Wang Y. Electrochemical Behavior Promotion of Polysulfides by Cobalt Selenide/Carbon Cloth Interlayer in Lithium−Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zhaowei Ren
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhenxin Zhao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Kun Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
- Shanxi Key Laboratory of New Energy Materials and Devices Taiyuan University of Technology Taiyuan 030024 PR China
| | - Yongzhen Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|
14
|
Zhang W, Hu Z, Fan C, Liu Z, Han S, Liu J. Construction and Theoretical Calculation of an Ultra-High-Performance LiVPO 4F/C Cathode by B-Doped Pyrolytic Carbon from Poly(vinylidene Fluoride). ACS APPLIED MATERIALS & INTERFACES 2021; 13:15190-15204. [PMID: 33769024 DOI: 10.1021/acsami.0c22958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
B-doped pyrolytic carbon from poly(vinylidene fluoride) (PVDF) was used to enhance the performance of a LiVPO4F/C cathode, which is much cheaper than carbon nanotubes and graphene. The carbon layer in LVPF/C-B3 becomes more and more regular compared with the undoped sample. The electronic conductivity, diffusion coefficient, and rate and cycle performance of the B-doped cathode are greatly improved. The capacities of LVPF/C-B3 at 0.2C, 5C, and 15C are 148.1, 132.9, and 125.6 mAh·g-1, which may be the best reported magnitude. The crystallite structure of LiVPO4F/C is well maintained after 300 charge and discharge cycles. The carbonization process of PVDF is greatly accelerated. These improvements are attributed to the changes in chemical and electronic structures. The generation of BC2O and BCO2 results in many defective active sites, and BC3 promotes the growth of a six-membered carbon ring. According to the first-principles approach based on density functional theory, the state density around the Fermi level of the B-doped pyrolytic carbon is increased. The electronic structure of pyrolytic carbon is transformed from a P-type semiconductor to a metal-like structure through the generation of pyridinic-like and graphitic-like B. Therefore, the electronic conductivity of LiVPO4F/C is increased.
Collapse
Affiliation(s)
- Weihua Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhuang Hu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Changling Fan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Zhixiao Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shaochang Han
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jinshui Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Jiang Z, Guo HJ, Zeng Z, Han Z, Hu W, Wen R, Xie J. Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries. ACS NANO 2020; 14:13784-13793. [PMID: 32924432 DOI: 10.1021/acsnano.0c06133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An ultrathick lithium metal anode (LMA) is a prerequisite for developing practical lithium-sulfur (Li-S) batteries that simultaneously meet the requirements of high areal capacity, lean electrolyte, and limited excess Li. Inspired by the electrochemical process for an organosulfur cathode, herein, we reconfigure such a sulfur cathode by using an overlithiation strategy to enable the formation of a high performance LMA. Specifically, an applicable ultrathick LMA is successfully constructed by overlithiating a well-known organosulfur cathode material, sulfurized polyacrylonitrile (SPAN). SPAN contains a polymeric pyridine structure with an outstanding lithium-ion affinity, so that it can act as a lithiophilic matrix. More importantly, a Li2S-rich solid electrolyte interphase (SEI) can be generated on the surface of SPAN during the overlithiation process. The synergistic effect of the lithiophilic matrix and a robust SEI leads to a dense deposition of lithium, which enables one to form an ultrathick LMA (159 μm, 30 mAh cm-2) with high Coulombic efficiency (99.7%). Such an LMA paired with a sulfur cathode of high areal capacity (up to 16 mAh cm-2) shows stable cycling under practical conditions of a lean electrolyte (2.2 μL mgS-1) and a negative-to-positive capacity (N/P) ratio as low as 1.3. The applicability of the ultrathick LMA was further verified with Li-S pouch cells, indicating a highly prospective route toward realization of practical Li-S batteries.
Collapse
Affiliation(s)
- Zhipeng Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui-Juan Guo
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ziqi Zeng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhilong Han
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Wei Hu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Wen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jia Xie
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|