1
|
Or T, Gourley SWD, Kaliyappan K, Zheng Y, Li M, Chen Z. Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Yang W, Liu Q, Zhao Y, Mu D, Tan G, Gao H, Li L, Chen R, Wu F. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries. SMALL METHODS 2022; 6:e2200555. [PMID: 35780504 DOI: 10.1002/smtd.202200555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The development of large-scale energy storage systems (EESs) is pivotal for applying intermittent renewable energy sources such as solar energy and wind energy. Lithium-ion batteries with LiFePO4 cathode have been explored in the integrated wind and solar power EESs, due to their long cycle life, safety, and low cost of Fe. Considering the penurious reserve and regional distribution of lithium resources, the Fe-based sodium-ion battery cathodes with earth-abundant elements, environmental friendliness, and safety appear to be the better substitutes in impending grid-scale energy storage. Compared to the transition metal oxide and Prussian blue analogs, the Fe-based polyanionic oxide cathodes possess high thermal stability, ultra-long cycle life, and adjustable voltage, which is more commercially viable in the future. This review summarizes the research progress of single Fe-based polyanionic and mixed polyanionic oxide cathodes for the potential sodium-ion batteries EESs candidates. In detail, the synthesized method, crystal structure, electrochemical properties, bottlenecks, and optimization method of Fe-based polyanionic oxide cathodes are discussed systematically. The insights presented in this review may serve as a guideline for designing and optimizing Fe-based polyanionic oxide cathodes for coming commercial sodium-ion batteries EESs.
Collapse
Affiliation(s)
- Wei Yang
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Qi Liu
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Yanshuo Zhao
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Daobin Mu
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Guoqiang Tan
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Hongcai Gao
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
3
|
Sivaraj P, Abhilash KP, Selvin PC. A Critical Review on Electrochemical Properties and Significance of Orthosilicate‐Based Cathode Materials for Rechargeable Li/Na/Mg Batteries and Hybrid Supercapacitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pazhaniswamy Sivaraj
- Luminescence and Solid-State Ionics Laboratory Department of Physics Bharathiar University Coimbatore 641046 Tamilnadu India
- Materials Research Centre Department of Physics Nallamuthu Gounder Mahalingam College Bharathiar University Pollachi 642001 Tamilnadu India
| | - Karuthedath Parameswaran Abhilash
- Department of Inorganic Chemistry University of Chemistry and Technology (UCT) Prauge Technicka 5, Pin 16628, Prauge-6 Czech Republic, Europe
| | - Paneerselvam Christopher Selvin
- Luminescence and Solid-State Ionics Laboratory Department of Physics Bharathiar University Coimbatore 641046 Tamilnadu India
| |
Collapse
|
4
|
Trabelsi K, Bodart J, Karoui K, Boschini F, Rhaiem AB, Mahmoud A. Electrochemical mechanism and effects of Fe doping and grinding process on the microstructural and electrochemical properties of Na2Co1-xFexSiO4 cathode material for sodium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|