1
|
Wang P, Wu J, Xiao X, Fan Y, Han X, Sun Y. Engineering Injectable Coassembled Hydrogel by Photothermal Driven Chitosan-Stabilized MoS 2 Nanosheets for Infected Wound Healing. ACS NANO 2024; 18:26961-26974. [PMID: 39305262 DOI: 10.1021/acsnano.4c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The application of enzyme-like molybdenum disulfide (MoS2) in tissue repair was confronted with stable dispersion, solubilization, and biotoxicity. Here, the injectable self-healing hydrogel was successfully designed using a step-by-step coassembly of chitosan and MoS2. Polyphenolic chitosan as a "structural stabilizer" of MoS2 nanosheets reconstructed well-dispersed MoS2@CSH nanosheets, which improved the biocompatibility of traditional MoS2, and strengthened its photothermal conversion and enzyme-like activities, guaranteeing highly efficient radical scavenging and antimicrobial properties. Furthermore, the polyphenol chitosan was employed again as a "molecular cross-linking agent" to form the injectable NIR-responsive MoS2@CSH hydrogel by accelerating hydrogen-bond interaction among chitosan and the multicross-linking reaction among polyphenols. The rapid self-healing ability was conducive to wound closure and dynamic adaptability. An experimental study on infected wound healing demonstrated that MoS2@CSH hydrogel could substantially eradicate bacteria and accelerate the angiogenesis of infected wounds. The photothermal-driven coassembly of MoS2 and polycation provided an alternative strategy for infected wound healing.
Collapse
Affiliation(s)
- Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Jingwen Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
2
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
3
|
Liu M, Ning Y, Ren M, Fu X, Cui X, Hou D, Wang Z, Cui J, Lin A. Internal Electric Field-Modulated Charge Migration Behavior in MoS 2 /MIL-53(Fe) S-Scheme Heterojunction for Boosting Visible-Light-Driven Photocatalytic Chlorinated Antibiotics Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303876. [PMID: 37469229 DOI: 10.1002/smll.202303876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Inadequate photo-generated charge separation, migration, and utilization efficiency limit the photocatalytic efficiency. Herein, a MoS2 /MIL-53(Fe) photocatalyst/activator with the S-scheme heterojunction structure is designed and the charge migration behavior is modulated by the internal electric field (IEF). The IEF intensity is enhanced to 40 mV by modulating band bending potential and the depletion layer length of MoS2 . The photo-generated electron migration process is boosted by constructing the electron migration bridge (Fe-O-S) and modulating the IEF as the driving force, confirmed by the density functional theory calculation. Compared with the pristine materials, the photocurrent density of MoS2 /MIL-53(Fe) is significantly enhanced 27.5 times. Contributed by the visible-light-driven cooperative catalytic degradation and the high-efficiency direct photo-generated electron reduction dichlorination process, satisfactory chlorinated antibiotics removal and detoxification performances are achieved. This study opens up new insights into the application of heterojunctions in photocatalytic activation of PDS in environmental remediation.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuting Ning
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinping Fu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zihan Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Liu H, Silva WC, Santana Gonçalves de Souza L, Veiga AG, Seixas L, Fujisawa K, Kahn E, Zhang T, Zhang F, Yu Z, Thompson K, Lei Y, de Matos CJS, Rocco MLM, Terrones M, Grasseschi D. 3d transition metal coordination on monolayer MoS 2: a facile doping method to functionalize surfaces. NANOSCALE 2022; 14:10801-10815. [PMID: 35735180 DOI: 10.1039/d2nr01132h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials (2DM) have attracted much interest due to their distinct optical, electronic, and catalytic properties. These properties can be tuned by a range of methods including substitutional doping and, as recently demonstrated, by surface functionalization with single atoms, thus increasing the 2DM portfolio. We theoretically and experimentally describe the coordination reaction between MoS2 monolayers and 3d transition metals (TMs), exploring their nature and MoS2-TM interactions. Density functional theory calculations, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy point to the formation of MoS2-TM coordination complexes, where the adsorption energy for 3d TMs resembles the crystal-field (CF) stabilization energy for weak-field complexes. Pearson's theory for hard-soft acid-base and ligand-field theory were used to discuss the periodic trends of 3d TM coordination on MoS2 monolayer surfaces. We found that softer acids with higher ligand field stabilization energy, such as Ni2+, tend to form bonds with more covalent character with MoS2, which can be considered a soft base. On the other hand, harder acids, such as Cr3+, tend to form more ionic bonds. Additionally, we studied the trends in charge transfer and doping observed from XPS and PL results, where metals like Ni led to n-type doping. In contrast, Cu functionalization results in p-type doping. Therefore, the formation of coordination complexes on TMD's surface is a potentially effective way to control and understand the nature of single-atom functionalization of TMD monolayers without relying on or creating new defects.
Collapse
Affiliation(s)
- He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Walner Costa Silva
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| | | | - Amanda Garcez Veiga
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| | - Leandro Seixas
- MackGraphe-Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, 01302-907, São Paulo, Brazil
- Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, Brazil
| | - Kazunori Fujisawa
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Kahn
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fu Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Katherine Thompson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yu Lei
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christiano J S de Matos
- MackGraphe-Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, 01302-907, São Paulo, Brazil
- Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, Brazil
| | - Maria Luiza M Rocco
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Grasseschi
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Chen F, Luo Y, Liu X, Zheng Y, Han Y, Yang D, Wu S. 2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application. Adv Healthc Mater 2022; 11:e2200360. [PMID: 35385610 DOI: 10.1002/adhm.202200360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Bacterial infections have seriously threatened human health and the abuse of natural or artificial antibiotics leads to bacterial resistance, so development of a new generation of antibacterial agents and treatment methods is urgent. 2D molybdenum sulfide (MoS2 ) has good biocompatibility, high specific surface area to facilitate surface modification and drug loading, adjustable energy bandgap, and high near-infrared photothermal conversion efficiency (PCE), so it is often used for antibacterial application through its photothermal or photodynamic effects. This review comprehensively summarizes and discusses the fabrication processes, structural characteristics, antibacterial performance, and the corresponding mechanisms of MoS2 -based materials as well as their representative antibacterial applications. In addition, the outlooks on the remaining challenges that should be addressed in the field of MoS2 are also proposed.
Collapse
Affiliation(s)
- Fangqian Chen
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yue Luo
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yufeng Zheng
- School of Materials Science & Engineering Peking University Beijing 100871 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science Quanzhou Normal University Quanzhou Fujian Province 362000 China
| | - Shuilin Wu
- School of Materials Science & Engineering Peking University Beijing 100871 China
| |
Collapse
|