1
|
Wang J, Gadenne V, Patrone L, Raimundo JM. Self-Assembled Monolayers of Push-Pull Chromophores as Active Layers and Their Applications. Molecules 2024; 29:559. [PMID: 38338304 PMCID: PMC10856137 DOI: 10.3390/molecules29030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent decades, considerable attention has been focused on the design and development of surfaces with defined or tunable properties for a wide range of applications and fields. To this end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials, which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion, sensors, optical devices, corrosion protection, and organic electronics, among many other applications, some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-based SAMs have gained importance as functional components, particularly in molecular electronics, bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties, opening up new perspectives in these fields. However, some key issues affecting device performance still need to be resolved to ensure their full use and access to novel functionalities such as memory, sensors, or active layers in optoelectronic devices. In this context, we will present herein recent advances in π-conjugated systems-based self-assembled monolayers (e.g., push-pull chromophores) as active layers and their applications.
Collapse
Affiliation(s)
- Junlong Wang
- Aix Marseille Univ, CNRS, CINaM, AMUTech, 13288 Marseille, France;
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | - Virginie Gadenne
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | - Lionel Patrone
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | | |
Collapse
|
2
|
Jiang S, Lebedev D, Andrews L, Gish JT, Song TW, Hersam MC, Balogun O. Quantitative Characterization of the Anisotropic Thermal Properties of Encapsulated Two-Dimensional MoS 2 Nanofilms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10123-10132. [PMID: 36753465 DOI: 10.1021/acsami.2c18755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) semiconductors exhibit unique physical properties at the limit of a few atomic layers that are desirable for optoelectronic, spintronic, and electronic applications. Some of these materials require ambient encapsulation to preserve their properties from environmental degradation. While encapsulating 2D semiconductors is essential to device functionality, they also impact heat management due to the reduced thermal conductivity of the 2D material. There are limited experimental reports on in-plane thermal conductivity measurements in encapsulated 2D semiconductors. These measurements are particularly challenging in ultrathin films with a lower thermal conductivity than graphene since it may be difficult to separate the thermal effects of the sample from the encapsulating layers. To address this challenge, we integrated the frequency domain thermoreflectance (FDTR) and optothermal Raman spectroscopy (OTRS) techniques in the same experimental platform. First, we use the FDTR technique to characterize the cross-plane thermal conductivity and thermal boundary conductance. Next, we measure the in-plane thermal conductivity by model-based analysis of the OTRS measurements, using the cross-plane properties obtained from the FDTR measurements as input parameters. We provide experimental data for the first time on the thickness-dependent in-plane thermal conductivity of ultrathin MoS2 nanofilms encapsulated by alumina (Al2O3) and silica (SiO2) thin films. The measured thermal conductivity increased from 26.0 ± 10.0 W m-1 K-1 for monolayer MoS2 to 39.8 ± 10.8 W m-1 K-1 for the six-layer films. We also show that the thickness-dependent cross-plane thermal boundary conductance of the Al2O3/MoS2/SiO2 interface is limited by the low thermal conductance (18.5 MW m-2 K-1) of the MoS2/SiO2 interface, which has important implications on heat management in SiO2-supported and encased MoS2 devices. The measurement methods can be generalized to other 2D materials to study their anisotropic thermal properties.
Collapse
Affiliation(s)
- Shizhou Jiang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Loren Andrews
- Department of Chemistry, Bates College, Lewiston, Maine 04240, United States
| | - J Tyler Gish
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas W Song
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Oluwaseyi Balogun
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Gish JT, Lebedev D, Stanev TK, Jiang S, Georgopoulos L, Song TW, Lim G, Garvey ES, Valdman L, Balogun O, Sofer Z, Sangwan VK, Stern NP, Hersam MC. Ambient-Stable Two-Dimensional CrI 3 via Organic-Inorganic Encapsulation. ACS NANO 2021; 15:10659-10667. [PMID: 34101433 DOI: 10.1021/acsnano.1c03498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional transitional metal halides have recently attracted significant attention due to their thickness-dependent and electrostatically tunable magnetic properties. However, this class of materials is highly reactive chemically, which leads to irreversible degradation and catastrophic dissolution within seconds in ambient conditions, severely limiting subsequent characterization, processing, and applications. Here, we impart long-term ambient stability to the prototypical transition metal halide CrI3 by assembling a noncovalent organic buffer layer, perylenetetracarboxylic dianhydride (PTCDA), which templates subsequent atomic layer deposition (ALD) of alumina. X-ray photoelectron spectroscopy demonstrates the necessity of the noncovalent organic buffer layer since the CrI3 undergoes deleterious surface reactions with the ALD precursors in the absence of PTCDA. This organic-inorganic encapsulation scheme preserves the long-range magnetic ordering in CrI3 down to the monolayer limit as confirmed by magneto-optical Kerr effect measurements. Furthermore, we demonstrate field-effect transistors, photodetectors, and optothermal measurements of CrI3 thermal conductivity in ambient conditions.
Collapse
Affiliation(s)
- J Tyler Gish
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teodor K Stanev
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Shizhou Jiang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Leonidas Georgopoulos
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas W Song
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gilhwan Lim
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Ethan S Garvey
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Lukáš Valdman
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Oluwaseyi Balogun
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathaniel P Stern
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|