1
|
Lee YG, Hong S, Pan B, Wu X, Dickey EC, Whitacre JF. Improving Bulk and Interfacial Lithium Transport in Garnet-Type Solid Electrolytes through Microstructure Optimization for High-Performance All-Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60340-60347. [PMID: 39465543 PMCID: PMC11551947 DOI: 10.1021/acsami.4c13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Garnet-type Li6.4La3Zr1.4Ta0.6O7 (LLZTO) is regarded as a highly competitive next-generation solid-state electrolyte for all-solid-state lithium batteries owing to reliable safety, a wide electrochemical operation window of 0-6 V versus Li+/Li, and a superior stability against Li metal. Nevertheless, insufficient interface contacts caused by pores, along with Li dendrite growth at these voids and grain boundary regions, have hindered their commercial application. Herein, we suggest a method to produce high-quality LLZTO using LiAlO2 (LAO) as a chemical additive that leads to an improved microstructure with larger grain size (∼25 μm), a high relative density (∼96%), lower porosity (∼3.7%), and continuous secondary phases in grain boundary regions. This improved structure results in (i) improved Li-ion conductivity and enhanced interfacial resistance between Li metal and LLZTO by a denser structure with fewer pores and (ii) suppression of Li dendrite penetration in the electrolyte by secondary phases in grain boundary regions.
Collapse
Affiliation(s)
- Young-Geun Lee
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh ,Pennsylvania15213, United States of America
| | - Seonghwan Hong
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh ,Pennsylvania15213, United States of America
| | - Bonian Pan
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh ,Pennsylvania15213, United States of America
| | - Xinsheng Wu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh ,Pennsylvania15213, United States of America
| | - Elizabeth C. Dickey
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh ,Pennsylvania15213, United States of America
| | - Jay F. Whitacre
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh ,Pennsylvania15213, United States of America
- Scott
Institute for Energy Innovation, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States of America
| |
Collapse
|
2
|
Guo Y, Pan S, Yi X, Chi S, Yin X, Geng C, Yin Q, Zhan Q, Zhao Z, Jin FM, Fang H, He YB, Kang F, Wu S, Yang QH. Fluorinating All Interfaces Enables Super-Stable Solid-State Lithium Batteries by In Situ Conversion of Detrimental Surface Li 2 CO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308493. [PMID: 38134134 DOI: 10.1002/adma.202308493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Indexed: 12/24/2023]
Abstract
Li-stuffed battery materials intrinsically have surface impurities, typically Li2 CO3 , which introduce severe kinetic barriers and electrochemical decay for a cycling battery. For energy-dense solid-state lithium batteries (SSLBs), mitigating detrimental Li2 CO3 from both cathode and electrolyte materials is required, while the direct removal approaches hardly avoid Li2 CO3 regeneration. Here, a decarbonization-fluorination strategy to construct ultrastable LiF-rich interphases throughout the SSLBs by in situ reacting Li2 CO3 with LiPF6 at 60 °C is reported. The fluorination of all interfaces effectively suppresses parasitic reactions while substantially reducing the interface resistance, producing a dendrite-free Li anode with an impressive cycling stability of up to 7000 h. Particularly, transition metal dissolution associated with gas evolution in the cathodes is remarkably reduced, leading to notable improvements in battery rate capability and cyclability at a high voltage of 4.5 V. This all-in-one approach propels the development of SSLBs by overcoming the limitations associated with surface impurities and interfacial challenges.
Collapse
Affiliation(s)
- Yong Guo
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Siyuan Pan
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xuerui Yi
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Sijia Chi
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xunjie Yin
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Chuannan Geng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Qianhui Yin
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - QinYi Zhan
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Ziyun Zhao
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Feng-Min Jin
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Hui Fang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yan-Bing He
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Feiyu Kang
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shichao Wu
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| |
Collapse
|
3
|
Orue Mendizabal A, Cheddadi M, Tron A, Beutl A, López-Aranguren P. Understanding Interfaces at the Positive and Negative Electrodes on Sulfide-Based Solid-State Batteries. ACS APPLIED ENERGY MATERIALS 2023; 6:11030-11042. [PMID: 38020742 PMCID: PMC10646897 DOI: 10.1021/acsaem.3c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Despite the high ionic conductivity and attractive mechanical properties of sulfide-based solid-state batteries, this chemistry still faces key challenges to encompass fast rate and long cycling performance, mainly arising from dynamic and complex solid-solid interfaces. This work provides a comprehensive assessment of the cell performance-determining factors ascribed to the multiple sources of impedance from the individual processes taking place at the composite cathode with high-voltage LiNi0.6Mn0.2Co0.2O2, the sulfide argyrodite Li6PS5Cl separator, and the Li metal anode. From a multiconfigurational approach and an advanced deconvolution of electrochemical impedance signals into distribution of relaxation times, we disentangle intricate underlying interfacial processes taking place at the battery components that play a major role on the overall performance. For the Li metal solid-state batteries, the cycling performance is highly sensitive to the chemomechanical properties of the cathode active material, formation of the SEI, and processes ascribed to Li diffusion in the cathode composite and in the space-charge layer. The outcomes of this work aim to facilitate the design of sulfide solid-state batteries and provide methodological inputs for battery aging assessment.
Collapse
Affiliation(s)
- Ander Orue Mendizabal
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque
Tecnológico de Álava, Albert Einstein, 48, 01510 Vitoria-Gasteiz, Spain
| | - Manar Cheddadi
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque
Tecnológico de Álava, Albert Einstein, 48, 01510 Vitoria-Gasteiz, Spain
| | - Artur Tron
- Battery
Technologies, Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, 1210 Vienna, Austria
| | - Alexander Beutl
- Battery
Technologies, Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, 1210 Vienna, Austria
| | - Pedro López-Aranguren
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque
Tecnológico de Álava, Albert Einstein, 48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
4
|
Seymour ID, Quérel E, Brugge RH, Pesci FM, Aguadero A. Understanding and Engineering Interfacial Adhesion in Solid-State Batteries with Metallic Anodes. CHEMSUSCHEM 2023; 16:e202202215. [PMID: 36892133 PMCID: PMC10962603 DOI: 10.1002/cssc.202202215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 06/18/2023]
Abstract
High performance alkali metal anode solid-state batteries require solid/solid interfaces with fast ion transfer that are morphologically and chemically stable upon electrochemical cycling. Void formation at the alkali metal/solid-state electrolyte interface during alkali metal stripping is responsible for constriction resistances and hotspots that can facilitate dendrite propagation and failure. Both externally applied pressures (35-400 MPa) and temperatures above the melting point of the alkali metal have been shown to improve the interfacial contact with the solid electrolyte, preventing the formation of voids. However, the extreme pressure and temperature conditions required can be difficult to meet for commercial solid-state battery applications. In this review, we highlight the importance of interfacial adhesion or 'wetting' at alkali metal/solid electrolyte interfaces for achieving solid-state batteries that can withstand high current densities without cell failure. The intrinsically poor adhesion at metal/ceramic interfaces poses fundamental limitations on many inorganics solid-state electrolyte systems in the absence of applied pressure. Suppression of alkali metal voids can only be achieved for systems with high interfacial adhesion (i. e. 'perfect wetting') where the contact angle between the alkali metal and the solid-state electrolyte surface goes to θ=0°. We identify key strategies to improve interfacial adhesion and suppress void formation including the adoption of interlayers, alloy anodes and 3D scaffolds. Computational modeling techniques have been invaluable for understanding the structure, stability and adhesion of solid-state battery interfaces and we provide an overview of key techniques. Although focused on alkali metal solid-state batteries, the fundamental understanding of interfacial adhesion discussed in this review has broader applications across the field of chemistry and material science from corrosion to biomaterials development.
Collapse
Affiliation(s)
- Ieuan D. Seymour
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
| | - Edouard Quérel
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
| | - Rowena H. Brugge
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
| | - Federico M. Pesci
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
| | - Ainara Aguadero
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
- Instituto de Ciencia de Materiales de MadridCSIC, Cantoblanco28049MadridSpain
| |
Collapse
|
5
|
Liu J, Wang T, Yu J, Li S, Ma H, Liu X. Review of the Developments and Difficulties in Inorganic Solid-State Electrolytes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2510. [PMID: 36984390 PMCID: PMC10055896 DOI: 10.3390/ma16062510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
All-solid-state lithium-ion batteries (ASSLIBs), with their exceptional attributes, have captured the attention of researchers. They offer a viable solution to the inherent flaws of traditional lithium-ion batteries. The crux of an ASSLB lies in its solid-state electrolyte (SSE) which shows higher stability and safety compared to liquid electrolyte. Additionally, it holds the promise of being compatible with Li metal anode, thereby realizing higher capacity. Inorganic SSEs have undergone tremendous developments in the last few decades; however, their practical applications still face difficulties such as the electrode-electrolyte interface, air stability, and so on. The structural composition of inorganic electrolytes is inherently linked to the advantages and difficulties they present. This article provides a comprehensive explanation of the development, structure, and Li-ion transport mechanism of representative inorganic SSEs. Moreover, corresponding difficulties such as interface issues and air stability as well as possible solutions are also discussed.
Collapse
|
6
|
Zhu C, Fuchs T, Weber SAL, Richter FH, Glasser G, Weber F, Butt HJ, Janek J, Berger R. Understanding the evolution of lithium dendrites at Li 6.25Al 0.25La 3Zr 2O 12 grain boundaries via operando microscopy techniques. Nat Commun 2023; 14:1300. [PMID: 36894536 PMCID: PMC9998873 DOI: 10.1038/s41467-023-36792-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
The growth of lithium dendrites in inorganic solid electrolytes is an essential drawback that hinders the development of reliable all-solid-state lithium metal batteries. Generally, ex situ post mortem measurements of battery components show the presence of lithium dendrites at the grain boundaries of the solid electrolyte. However, the role of grain boundaries in the nucleation and dendritic growth of metallic lithium is not yet fully understood. Here, to shed light on these crucial aspects, we report the use of operando Kelvin probe force microscopy measurements to map locally time-dependent electric potential changes in the Li6.25Al0.25La3Zr2O12 garnet-type solid electrolyte. We find that the Galvani potential drops at grain boundaries near the lithium metal electrode during plating as a response to the preferential accumulation of electrons. Time-resolved electrostatic force microscopy measurements and quantitative analyses of lithium metal formed at the grain boundaries under electron beam irradiation support this finding. Based on these results, we propose a mechanistic model to explain the preferential growth of lithium dendrites at grain boundaries and their penetration in inorganic solid electrolytes.
Collapse
Affiliation(s)
- Chao Zhu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Till Fuchs
- Institute of Physical Chemistry & Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392, Giessen, Germany
| | - Stefan A L Weber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Felix H Richter
- Institute of Physical Chemistry & Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392, Giessen, Germany
| | - Gunnar Glasser
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franjo Weber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry & Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392, Giessen, Germany.
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Lu Y, Zhao CZ, Hu JK, Sun S, Yuan H, Fu ZH, Chen X, Huang JQ, Ouyang M, Zhang Q. The void formation behaviors in working solid-state Li metal batteries. SCIENCE ADVANCES 2022; 8:eadd0510. [PMID: 36351020 PMCID: PMC9645723 DOI: 10.1126/sciadv.add0510] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and growth model, and make an analogy with the bubble formation in liquid phases. In solid-state lithium metal batteries, the lithium stripping-induced interfacial void formation determines the morphological instabilities that result in battery failure. The void-induced contact loss processes are quantified in a phase diagram under wide current densities ranging from 1.0 to 10.0 milliamperes per square centimeter by rational electrochemistry calculations. The in situ-visualized morphological evolutions reveal the microscopic features of void defects under different stripping circumstances. The electrochemical-morphological relationship helps to elucidate the current density- and areal capacity-dependent void nucleation and growth mechanisms, which affords fresh insights on understanding and designing solid-solid interfaces for advanced solid-state batteries.
Collapse
Affiliation(s)
- Yang Lu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chen-Zi Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Jiang-Kui Hu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shuo Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hong Yuan
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Minggao Ouyang
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Zhong Y, Cao C, Tadé MO, Shao Z. Ionically and Electronically Conductive Phases in a Composite Anode for High-Rate and Stable Lithium Stripping and Plating for Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38786-38794. [PMID: 35973161 DOI: 10.1021/acsami.2c09801] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intensive efforts have been taken to decrease the over-potentials of solid-state lithium batteries. Lowering the anode-electrolyte interface resistance is an effective method. Compared to simply improving the interface contact, constructing both ionically and electronically conductive phases within the anode demonstrates superior improvement in reducing the interface resistance and promoting electrochemical stability. However, complex preparation procedures are usually involved in the construction of the conductive phases and the loading of metallic lithium. Herein, a composite anode containing metallic lithium and well-dispersed ionically conductive Li3N and electronically conductive components (Fe, Fe3C, and amorphous carbon) shows an effective decrease in lithium stripping/plating over-potentials at high current densities of up to 3 mA cm-2. The unique dual ionically and electronically conductive phases exhibit good cycling stability for 3000 h. A full battery with the composite anode and a LiFePO4 cathode also demonstrates decent performance. This work confirms the importance of constructing dual conductive phases that are electrochemically stable to Li and will not be consumed during the electrochemical reaction and provides a facile preparation method. The new knowledge discovered and the new methods developed in this work would inspire the future development of new Li-containing composite anodes.
Collapse
Affiliation(s)
- Yijun Zhong
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| | - Chencheng Cao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| | - Moses Oludayo Tadé
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Li J, Zhang J, Zhai H, Tang X, Tan G. Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Stockham MP, Dong B, Slater PR. High entropy lithium garnets – Testing the compositional flexibility of the lithium garnet system. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Stockham MP, Griffiths AA, Dong B, Slater PR. Assessing the Importance of Cation Size in the Tetragonal-Cubic Phase Transition in Lithium-Garnet Electrolytes. Chemistry 2021; 28:e202103442. [PMID: 34851537 DOI: 10.1002/chem.202103442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Lithium garnets are promising solid-state electrolytes for next-generation lithium-ion batteries. These materials have high ionic conductivity, a wide electrochemical window and stability with Li metal. However, lithium garnets have a maximum limit of seven lithium atoms per formula unit (e.g., La3 Zr2 Li7 O12 ), before the system transitions from a cubic to a tetragonal phase with poor ionic mobility. This arises from full occupation of the Li sites. Hence, the most conductive lithium garnets have Li between 6-6.55 Li per formula unit, which maintains the cubic symmetry and the disordered Li sub-lattice. The tetragonal phase, however, forms the highly conducting cubic phase at higher temperatures, thought to arise from increased cell volume and entropic stabilisation permitting Li disorder. However, little work has been undertaken in understanding the controlling factors of this phase transition, which could enable enhanced dopant strategies to maintain room temperature cubic garnet at higher Li contents. Here, a series of nine tetragonal garnets were synthesised and analysed by variable temperature XRD to understand the dependence of site substitution on the phase transition temperature. Interestingly the octahedral site cation radius was identified as the key parameter for the transition temperature with larger or smaller dopants altering the transition temperature noticeably. A site substitution was, however, found to make little difference irrespective of significant changes to cell volume.
Collapse
Affiliation(s)
- Mark P Stockham
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT., UK
| | - A Alice Griffiths
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT., UK
| | - Bo Dong
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT., UK
| | - Peter R Slater
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT., UK
| |
Collapse
|
12
|
Stockham MP, Dong B, James MS, Li Y, Ding Y, Kendrick E, Slater PR. Evaluation of Ga 0.2Li 6.4Nd 3Zr 2O 12 garnets: exploiting dopant instability to create a mixed conductive interface to reduce interfacial resistance for all solid state batteries. Dalton Trans 2021; 50:13786-13800. [PMID: 34517411 DOI: 10.1039/d1dt02474d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The next major leap in energy storage is thought to arise from a practical implementation of all solid-state batteries, which remain largely confined to the small scale due to issues in manufacturing and mechanical stability. Lithium batteries are amongst the most sought after, for the high expected energy density and improved safety characteristics, however the challenge of finding a suitable solid-state electrolyte remains. Lithium rich garnets are prime contenders as electrolytes, owing to their high ionic conductivity (>0.1 mS cm-1), wide electrochemical window (0-6 V) and stability with Li metal. However, the high Young's modulus of these materials, poor wetting of Li metal and rapid formation of Li2CO3 passivating layers tends to give a detrimentally large resistance at the solid-solid interface, limiting their application in solid state batteries. Most studies have focused on La based systems, with very little work on other lanthanides. Here we report a study of the Nd based garnet Ga0.2Li6.4Nd3Zr2O12, illustrating substantial differences in the interfacial behaviour. This garnet shows very low interfacial resistance attributed to dopant exsolution which, when combined with moderate heating (175 °C, 1 h) with Li metal, we suggest forms Ga-Li eutectics, which significantly reduces the resistance at the Li/garnet interface to as low as 67 Ω cm2 (much lower than equivalent La based systems). The material also shows intrinsically high density (93%) and good conductivity (≥0.2 mS cm-1) via conventional furnaces in air. It is suggested these garnets are particularly well suited to provide a mixed conductive interface (in combination with other garnets) which could enable future solid-state batteries.
Collapse
Affiliation(s)
- M P Stockham
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.
| | - B Dong
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.
| | - M S James
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.
| | - Y Li
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Y Ding
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - E Kendrick
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - P R Slater
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Zhang T, Li Y, Chen N, Wen Z, Shang Y, Zhao Y, Yan M, Guan M, Wu F, Chen R. Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:681-687. [PMID: 33398985 DOI: 10.1021/acsami.0c19075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-energy-density Li-metal batteries are of great significance in the energy storage field. However, the safety hazards caused by Li dendrite growth and flammable organic electrolytes significantly hinder the widespread application of Li-metal batteries. In this work, we report a highly safe electrolyte composed of 4 M lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in the single solvent trimethyl phosphate (TMP). By regulating the solvation structure of the electrolyte, a combination of nonflammability and Li dendrite growth suppression was successfully realized. Both Raman spectroscopy and molecular dynamics simulations revealed improved dendrite-free Li anode originating from the unique solvation structure of the electrolyte. Symmetric Li/Li cells fabricated using this nonflammable electrolyte had a long cycle life of up to 1000 h at a current density of 0.5 mA cm-2. Furthermore, the Li4Ti5O12/TMP-4/Li full cells also exhibited excellent cycling performance with a high initial discharge capacity of 170.5 mAh g-1 and a capacity retention of 92.7% after 200 cycles at 0.2 C. This work provides an effective approach for the design of safe electrolytes with favorable solvation structure toward the large-scale application of Li-metal batteries.
Collapse
Affiliation(s)
- Ting Zhang
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuejiao Li
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Nan Chen
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Ziyue Wen
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanxin Shang
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyuan Zhao
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mingxia Yan
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minrong Guan
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Wu
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Renjie Chen
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
14
|
Amores M, El-Shinawi H, McClelland I, Yeandel SR, Baker PJ, Smith RI, Playford HY, Goddard P, Corr SA, Cussen EJ. Li 1.5La 1.5MO 6 (M = W 6+, Te 6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries. Nat Commun 2020; 11:6392. [PMID: 33319782 PMCID: PMC7738526 DOI: 10.1038/s41467-020-19815-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries.
Collapse
Affiliation(s)
- Marco Amores
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Hany El-Shinawi
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.,The Faraday Institution, Harwell Campus, Didcot, OX1 0RA, UK
| | - Innes McClelland
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Stephen R Yeandel
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Peter J Baker
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Ronald I Smith
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Helen Y Playford
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Pooja Goddard
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Serena A Corr
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK. .,Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Edmund J Cussen
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK. .,Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
15
|
Dong B, Stockham MP, Chater PA, Slater PR. X-ray pair distribution function analysis and electrical and electrochemical properties of cerium doped Li 5La 3Nb 2O 12 garnet solid-state electrolyte. Dalton Trans 2020; 49:11727-11735. [PMID: 32797132 DOI: 10.1039/d0dt02112a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Garnet solid state electrolytes have been considered as potential candidates to enable next generation all solid state batteries (ASSBs). To facilitate the practical application of ASSBs, a high room temperature ionic conductivity and a low interfacial resistance between solid state electrolyte and electrodes are essential. In this work, we report a study of cerium doped Li5La3Nb2O12 through X-ray pair distribution function analysis, impedance spectroscopy and electrochemical testing. The successful cerium incorporation was confirmed by both X-ray diffraction refinement and X-ray pair distribution function analysis, showing the formation of an extensive solid solution. The local bond distances for Ce and Nb on the octahedral site were determined using X-ray pair distribution function analysis, illustrating the longer bond distances around Ce. This Ce doping strategy was shown to give a significant enhancement in conductivity (1.4 × 10-4 S cm-1 for Li5.75La3Nb1.25Ce0.75O12, which represents one of the highest conductivities for a garnet with less than 6 Li) as well as a dramatically decreased interfacial resistance (488 Ω cm2 for Li5.75La3Nb1.25Ce0.75O12). In order to demonstrate the potential of this doped system for use in ASSBs, the long term cycling of a Li//garnet//Li symmetric cell over 380 h has been demonstrated.
Collapse
Affiliation(s)
- Bo Dong
- School of Chemistry, University of Birmingham, B15 2TT, UK.
| | | | - Philip A Chater
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Peter R Slater
- School of Chemistry, University of Birmingham, B15 2TT, UK.
| |
Collapse
|