1
|
Awate S, Xu K, Liang J, Katz B, Muzzio R, Crespi VH, Katoch J, Fullerton-Shirey SK. Strain-Induced 2H to 1T' Phase Transition in Suspended MoTe 2 Using Electric Double Layer Gating. ACS NANO 2023; 17:22388-22398. [PMID: 37947443 PMCID: PMC10690768 DOI: 10.1021/acsnano.3c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
MoTe2 can be converted from the semiconducting (2H) phase to the semimetallic (1T') phase by several stimuli including heat, electrochemical doping, and strain. This type of phase transition, if reversible and gate-controlled, could be useful for low-power memory and logic. In this work, a gate-controlled and fully reversible 2H to 1T' phase transition is demonstrated via strain in few-layer suspended MoTe2 field effect transistors. Strain is applied by the electric double layer gating of a suspended channel using a single ion conducting solid polymer electrolyte. The phase transition is confirmed by simultaneous electrical transport and Raman spectroscopy. The out-of-plane vibration peak (A1g)─a signature of the 1T' phase─is observed when VSG ≥ 2.5 V. Further, a redshift in the in-plane vibration mode (E2g) is detected, which is a characteristic of a strain-induced phonon shift. Based on the magnitude of the shift, strain is estimated to be 0.2-0.3% by density functional theory. Electrically, the temperature coefficient of resistance transitions from negative to positive at VSG ≥ 2 V, confirming the transition from semiconducting to metallic. The approach to gate-controlled, reversible straining presented here can be extended to strain other two-dimensional materials, explore fundamental material properties, and introduce electronic device functionalities.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jierui Liang
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Benjamin Katz
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ryan Muzzio
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent H. Crespi
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jyoti Katoch
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Awate S, Mostek B, Kumari S, Dong C, Robinson JA, Xu K, Fullerton-Shirey SK. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15785-15796. [PMID: 36926818 PMCID: PMC10064313 DOI: 10.1021/acsami.2c13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Electric-double-layer (EDL) gating can induce large capacitance densities (∼1-10 μF cm-2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm-2 for electrons and 1.4 × 1013 cm-2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm-1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brendan Mostek
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shalini Kumari
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Joshua A. Robinson
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School
of Chemistry and Materials Science, Rochester
Institute of Technology, Rochester, New York 14623, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Sun Z, Xu K, Liu C, Beaumariage J, Liang J, Fullerton-Shirey SK, Shi ZY, Wu J, Snoke D. Photoluminescence Switching Effect in a Two-Dimensional Atomic Crystal. ACS NANO 2021; 15:19439-19445. [PMID: 34878266 DOI: 10.1021/acsnano.1c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional materials are an emerging class of materials with a wide range of electrical and optical properties and potential applications. Single-layer structures of semiconducting transition metal dichalcogenides are gaining increasing attention for use in field-effect transistors. Here, we report a photoluminescence switching effect based on single-layer WSe2 transistors. Dual gates are used to tune the photoluminescence intensity. In particular, a side-gate is utilized to control the location of ions within a solid polymer electrolyte to form an electric double layer at the interface of electrolyte and WSe2 and induce a vertical electric field. Additionally, a back-gate is used to apply a second vertical electric field. An on-off ratio of the light emission up to 90 was observed under constant pump light intensity. In addition, a blue shift of the photoluminescence line up to 36 meV was observed. We attribute this blue shift to the decrease of exciton binding energy due to the change of nonlinear in-plane dielectric constant and use it to determine the third-order off-diagonal susceptibility χ(3) = 3.50 × 10-19 m2/V2.
Collapse
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, United States
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Chang Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Jonathan Beaumariage
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jierui Liang
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Susan K Fullerton-Shirey
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhe-Yu Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - David Snoke
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Peltekoff A, Brixi S, Niskanen J, Lessard BH. Ionic Liquid Containing Block Copolymer Dielectrics: Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds. JACS AU 2021; 1:1044-1056. [PMID: 34467348 PMCID: PMC8395628 DOI: 10.1021/jacsau.1c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required. A library of 27 well-defined, poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers, with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6 - or BF4 -), were synthesized, characterized and integrated into OTFTs. The fraction of VBBI+ in the poly(VBBI+[X]-r-PEGMA) block ranged from to 100 mol % and led to glass transition temperatures (T g) between -7 and 55 °C for that block. When VBBI+ composition was equal or above 50 mol %, the block copolymer self-assembled into well-ordered domains with sizes between 22 and 52 nm, depending on the composition and choice of anion. The block copolymers double-layer capacitance (C DL) and ionic conductivity (σ) were found to correlate to the polymer self-assembly and the T g of the poly(VBBI+[X]-r-PEGMA) block. Finally, the block copolymers were integrated into OTFTs as the gating medium that led to n-type devices with threshold voltages of 0.5-1.5 V while maintaining good electron mobilities. We also found that the greater the σ of the PIL, the greater the OTFT operating frequency could reach. However, we also found that C DL is not strictly proportional to OTFT output currents.
Collapse
Affiliation(s)
- Alexander
J. Peltekoff
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Samantha Brixi
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Jukka Niskanen
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|