1
|
Lai CY, Liu CF, Lin TL, Chen MY, Huang YC, Huang HH, Dong CL, Wang DY, Yeh PH, Wu WW. Defect-Rich SnO 2 Nanofiber as an Oxygen-Defect-Driven Photoenergy Shield against UV Light Cell Damage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42868-42880. [PMID: 37647236 DOI: 10.1021/acsami.3c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Usually, most studies focus on toxic gas and photosensors by using electrospinning and metal oxide polycrystalline SnO2 nanofibers (PNFs), while fewer studies discuss cell-material interactions and photoelectric effect. In this work, the controllable surface morphology and oxygen defect (VO) structure properties were provided to show the opportunity of metal oxide PNFs to convert photoenergy into bio-energy for bio-material applications. Using the photobiomodulation effect of defect-rich polycrystalline SnO2 nanofibers (PNFs) is the main idea to modulate the cell-material interactions, such as adhesion, growth direction, and reactive oxygen species (ROS) density. The VO structures, including out-of-plane oxygen defects (op-VO), bridge oxygen defects (b-VO), and in-plane oxygen defects (ip-VO), were studied using synchrotron analysis to investigate the electron transfer between the VO structures and conduction bands. These intragrain VO structures can be treated as generation-recombination centers, which can convert various photoenergies (365-520 nm) into different current levels that form distinct surface potential levels; this is referred to as the photoelectric effect. PNF conductivity was enhanced 53.6-fold by enlarging the grain size (410 nm2) by increasing the annealing temperature, which can improve the photoelectric effect. In vitro removal of reactive oxygen species (ROS) can be achieved by using the photoelectric effect of PNFs. Also, the viability and shape of human bone marrow mesenchymal stem cells (hMSCs-BM) were also influenced significantly by the photobiomodulation effect. The cell damage and survival rate can be prevented and enhanced by using PNFs; metal oxide nanofibers are no longer only environmental sensors but can also be a bio-material to convert the photoenergy into bio-energy for biomedical science applications.
Collapse
Affiliation(s)
- Chun-Yen Lai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Fei Liu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-Ling Lin
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Mei-Yu Chen
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Ding-Yeong Wang
- Department of Electrical Engineering, Feng Chia University, Taichung 407802, Taiwan
| | - Ping-Hung Yeh
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu 30078, Taiwan
| |
Collapse
|
2
|
Yu Y, Zeng Z, Gao X, Xiong C, Zhu H, Cen H, Zheng X, Liu Q, Hu T, Wu C. A Maximization of the Proton Conductivity of Sulfonated Poly(Ether Ether Ketone) with Grafted Segments Containing Multiple, Flexible Propanesulfonic Acid Groups. Macromol Rapid Commun 2023; 44:e2200926. [PMID: 36527198 DOI: 10.1002/marc.202200926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 12/23/2022]
Abstract
To enhance the proton conductivity of sulfonated poly(ether ether ketone) (SPEEK), proton-conducting groups are required to be covalently connected to SPEEK and form proton-conducting channels. Herein, SPEEK fully grafted with segments containing multiple, flexible propanesulfonic acid groups (MS-SPEEK-102) is successfully prepared. Compared with SPEEK, MS-SPEEK-102 exhibits a higher proton conductivity of 8.3 × 10-2 S cm-1 at 80 °C with 98% relative humidity, and consequently a greater power density of 0.530 W cm-2 at 60 °C. These can be ascribed to the increased number of sulfonic acid groups, and ample, uninterrupted proton-conducting channels constructed by the movement of the maximum content, flexible side-chain segments. This approach offers an idea for obtaining a proton exchange membrane with good proton conductivity based on SPEEK.
Collapse
Affiliation(s)
- Yang Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Zheng Zeng
- Jingmen City Huafu Polymeric Materials Co., Ltd., Jingmen, Hubei, 448000, P. R. China
| | - Xuesong Gao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Chunyong Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Huamei Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Hongyu Cen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| |
Collapse
|
8
|
Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14206709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.
Collapse
|
9
|
Cai YY, Zhang QG, Zhu AM, Liu QL. Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. J Colloid Interface Sci 2021; 594:593-603. [PMID: 33780764 DOI: 10.1016/j.jcis.2021.03.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel two-dimensional (2D) zeolitic imidazolate framework-graphene oxide hybrid nanocomposite (ZIF-L@GO) is designed as an inorganic filler in sulfonated poly(ether ether ketone) (SPEEK). ZIF-L with unique leaf-like morphology is grown in-situ on the GO sheet in aqueous media at room temperature. The terminal imidazole linker in ZIF-L@GO and the -SO3H in SPEEK can form acid-base pairs in the membrane interface to produce low energy proton conduction highway. Benefiting from the unique structural advantage, the hybrid SP-ZIF-L@GO membranes displayed promoted physicochemical and electrochemical performances over the pure SPEEK. The SP-ZIF-L@GO-5 achieved a proton conductivity of 0.265 and 0.0364 S cm-1 at 70 °C-100% RH and 90 °C-40% RH, 1.76- and 6.24-fold higher than pure SPEEK, respectively. Meanwhile, a single cell based on SP-ZIF-L@GO-5 had an output power up to 652.82 mW cm-2 at 60 °C, 1.45 times higher than the pure SPEEK. In addition, the durability test was performed by holding open circuit voltage (OCV) for 24 h. The SP-ZIF-L@GO-5 provided better long-term stability than the pure SPEEK. These superior performance suggests a promising application in PEMFC.
Collapse
Affiliation(s)
- Yuan Yuan Cai
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|