1
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Red and near-infrared light-activated photoelectrochemical nanobiosensors for biomedical target detection. Mikrochim Acta 2024; 191:535. [PMID: 39141139 PMCID: PMC11324696 DOI: 10.1007/s00604-024-06592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
2
|
Bakhshandeh F, Saha S, Sen P, Sakib S, MacLachlan R, Kanji F, Osman E, Soleymani L. A universal bacterial sensor created by integrating a light modulating aptamer complex with photoelectrochemical signal readout. Biosens Bioelectron 2023; 235:115359. [PMID: 37187062 DOI: 10.1016/j.bios.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical (PEC) signal transduction is of great interest for ultrasensitive biosensing; however, signal-on PEC assays that do not require target labeling remain elusive. In this work, we developed a signal-on biosensor that uses nucleic acids to modulate PEC currents upon target capture. Target presence removes a biorecognition probe from a DNA duplex carrying a gold nanoparticle, bringing the gold nanoparticle in direct contact to the photoelectrode and increasing the PEC current. This assay was used to develop a universal bacterial detector by targeting peptidoglycan using an aptamer, demonstrating a limit-of-detection of 82 pg/mL (13 pM) in buffer and 239 pg/mL (37 pM) in urine for peptidoglycan and 1913 CFU/mL forEscherichia coliin urine. When challenged with a panel of unknown targets, the sensor identified samples with bacterial contamination versus fungi. The versatility of the assay was further demonstrated by analyzing DNA targets, which yielded a limit-of-detection of 372 fM.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sudip Saha
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Payel Sen
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sadman Sakib
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Roderick MacLachlan
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Farhaan Kanji
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Enas Osman
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Photoelectrochemical biosensor based on FTO modified with BiVO4 film and gold nanoparticles for detection of miRNA-25 biomarker and single-base mismatch. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Li Y, Liu D, Meng S, Dong N, Liu C, Wei Y, You T. Signal-enhanced strategy for ratiometric aptasensing of aflatoxin B1: Plasmon-modulated competition between photoelectrochemistry-driven and electrochemistry-driven redox of methylene blue. Biosens Bioelectron 2022; 218:114759. [DOI: 10.1016/j.bios.2022.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
5
|
Scott A, Sakib S, Saha S, Zhitomirsky I, Soleymani L. A portable and smartphone-operated photoelectrochemical reader for point-of-care biosensing. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Saha S, Yang J, Masouleh SSM, Botton G, Soleymani L. Hot hole direct photoelectrochemistry of Au NPs: Interband versus Intraband hot carriers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Sakib S, Hosseini A, Zhitomirsky I, Soleymani L. Photoelectrochemical IL-6 Immunoassay Manufactured on Multifunctional Catecholate-Modified TiO 2 Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50851-50861. [PMID: 34664926 DOI: 10.1021/acsami.1c18240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is an increasing interest in using photoelectrochemistry for enhancing the signal-to-noise ratio and sensitivity of electrochemical biosensors. Nevertheless, it remains challenging to create photoelectrochemical biosensors founded on stable material systems that are also easily biofunctionalized for sensing applications. Herein, a photoelectrochemical immunosensor is reported, in which the concentration of the target protein directly correlates to a change in the measured photocurrent. The material system for the photoelectrode signal transducer involves using catecholate ligands to modify the properties of TiO2 nanostructures in a three-pronged approach of morphology tuning, photoabsorption enhancement, and facilitating bioconjugation. The catecholate-modified TiO2 photoelectrode is combined with a signal-off direct immunoassay to detect interleukin-6 (IL-6), a key biomarker for diagnosing and monitoring various diseases. Catecholate ligands are added during hydrothermal synthesis of TiO2 to enable the growth of three-dimensional nanostructures to form highly porous photoelectrodes that provide a three-dimensional scaffold for immobilizing capture antibodies. Surface modification by catecholate ligands greatly enhances photocurrent generation of the TiO2 photoelectrodes by improving photoabsorption in the visible range. Additionally, catecholate molecules facilitate bioconjugation and probe immobilization by forming a Schiff-base between their -COH group and the -NH2 group of the capture antibodies. The highest photocurrent achieved herein is 8.89 μA cm-2, which represents an enhancement by a factor of 87 from unmodified TiO2. The fabricated immunosensor shows a limit-of-detection of 3.6 pg mL-1 and a log-linear dynamic range of 2-2000 pg mL-1 for IL-6 in human blood plasma.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Amin Hosseini
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor Zhitomirsky
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| |
Collapse
|
8
|
Saha S, Victorious A, Soleymani L. Modulating the photoelectrochemical response of titanium dioxide (TiO2) photoelectrodes using gold (Au) nanoparticles excited at different wavelengths. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Victorious A, Saha S, Pandey R, Soleymani L. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Sudip Saha
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Richa Pandey
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Leyla Soleymani
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| |
Collapse
|
10
|
Victorious A, Saha S, Pandey R, Soleymani L. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout. Angew Chem Int Ed Engl 2021; 60:7316-7322. [PMID: 33403773 DOI: 10.1002/anie.202014329] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Sudip Saha
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Richa Pandey
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Leyla Soleymani
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| |
Collapse
|