1
|
Sun W, Liu J, Ran F, Li N, Li Z, Li Y, Wang K. Step-scheme CsPbBr 3/BiOBr photocatalyst with oxygen vacancies for efficient CO 2 photoreduction. Dalton Trans 2024; 53:14018-14027. [PMID: 39105523 DOI: 10.1039/d4dt01214c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Metal halide perovskites with suitable energy band structures and excellent visible-light responses have emerged as promising photocatalysts for CO2 reduction to valuable chemicals and fuels. However, the efficiency of CO2 photocatalytic reduction often suffers from inefficient separation and sluggish transfer. Herein, a step-scheme (S-scheme) CsPbBr3/BiOBr photocatalyst with oxygen vacancies possessing intimate interfacial contact was fabricated by anchoring CsPbBr3 QDs on BiOBr-Ov nanosheets using a mild anti-precipitation method. The results showed that CsPbBr3/BiOBr-Ov-2 with an internal electric field (IEF) heterojunction exhibited a boosted evolution rate of 27.4 μmol g-1 h-1 (CO: 23.8 μmol g-1 h-1 and CH4: 3.6 μmol g-1 h-1) with an electron consumption rate (Relectron) of 76.4 μmol g-1 h-1, which was 5.9 and 3.2 times that of single CsPbBr3 and BiOBr-Ov, respectively. Density functional theory (DFT) calculations revealed that BiOBr with oxygen vacancies can effectively enhance the adsorption and activation of CO2 molecules. More importantly, in situ infrared Fourier transform spectroscopy (DRIFTS) spectra show the transformation process of the surface species, while the femtosecond transient absorption spectrum (fs-TA) reveals the charge transfer kinetics of the CsPbBr3/BiOBr-Ov. Overall, this work provides some guidance for the rational design of S-scheme heterojunctions and vacancy-engineered photocatalysts, which are expected to have potential applications in the fields of photocatalysis and solar energy conversion.
Collapse
Affiliation(s)
- Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
- Key Laboratory of Solar Power System Engineering, Jiuquan Vocational and Technical College, Jiuquan, 735000, China
| | - Jifei Liu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| | - Feitian Ran
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| | - Na Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| | - Zengpeng Li
- Key Laboratory of Solar Power System Engineering, Jiuquan Vocational and Technical College, Jiuquan, 735000, China
| | - Yuanyuan Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China.
| | - Kai Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
2
|
Singh D, Sharma P, Pant S, Dave V, Sharma R, Yadav R, Prakash A, Kuila A. Ecofriendly fabrication of cobalt nanoparticles using Azadirachta indica (neem) for effective inhibition of Candida-like fungal infection in medicated nano-coated textile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46575-46590. [PMID: 37286837 DOI: 10.1007/s11356-023-28061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
This study involves the formulation of cobalt nanoparticles by means of ethanolic Azadirachta indica (neem) extract (CoNP@N). Later, the formulated buildup was incorporated into cotton fabric in order to mitigate antifungal infection. Optimization of the formulation was carried out by considering the effect of plant concentration, temperature, and revolutions per minute (rpm) used, through design of the experiment (DOE), response surface methodology (RSM), and ANOVA of the synthetic procedure. Hence, graph was potted with the aid of effecting parameters and the related factors (size of particle and zeta potential). Further characterization of nanoparticles was performed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was considered for the detection of functional groups. The structural property of CoNP@N was calculated with the aid of powder X-ray diffraction (PXRD). The surface property was measured with the use of a surface area analyzer (SAA). The values of Inhibition concentration (IC50) and zone of inhibition (ZOI), were calculated, so as to determine the antifungal property against both the strains (Candida albicans, MTCC 227and Aspergillus niger, MTCC 8652). The further nano-coated cloth was subjected to a durability test, and hence the cloth was washed (through the purpose of time 0; 10; 25; and 50 washing cycles), and then its anti-fungal operation to a couple of strains was retained. Primarily, 51 μg/ml of cobalt nanoparticles incorporated on the cloth was retained but after 50 washing cycles in 500 ml of purified water, the cloth showed more efficiency contrary to C. albicans than towards A. niger.
Collapse
Affiliation(s)
- Devsuni Singh
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Prashansa Sharma
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Home Science, Mahila Mahavidyala, Banaras Hindu University, Varanasi, 221005, India
| | - Suman Pant
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Vivek Dave
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, 824236, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- National Forensic Science University, Tripura Campus, Agartala, 799006, India
| | - Anand Prakash
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| |
Collapse
|
3
|
Zhong X, Xu J, Chen J, Wang X, Zhu Q, Zeng H, Zhang Y, Pu Y, Hou X, Wu X, Niu Y, Zhang W, Wu YA, Wang Y, Zhang B, Huang K, Feng S. Spatially and Temporally Resolved Dynamic Response of Co-Based Composite Interface during the Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:7467-7479. [PMID: 38446421 DOI: 10.1021/jacs.3c12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.
Collapse
Affiliation(s)
- Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Jingyao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hui Zeng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Huang M, Kong Z, Ai Z, Shi D, Yang M, Yao X, Shao Y, Wu Y, Hao X. Twin Zn 1- x Cd x S Solid Solution: Highly Efficient Photocatalyst for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304784. [PMID: 37699758 DOI: 10.1002/smll.202304784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Twins in crystal defect, one of the significant factors affecting the physicochemical properties of semiconductor materials, are applied in catalytic conversion. Among the catalysts serving for photocatalytic water splitting, Zn1- x Cdx S has become a hot-point due to its adjustable energy band structure. Via limiting mass transport to control the release rate of anions/cations, twin Zn1- x Cdx S solid solution is prepared successfully, which lays a foundation for the construction of other twin crystals in the future. On twin Zn1- x Cdx S, water tends to be dissociated after being adsorbed by Zn2+ /Cd2+ at twin boundary, then the fast-moving electrons at twin boundary quickly combine with the protons already attached to S2- to form hydrogen. According to the theoretical calculation, not only the intracrystalline electron mobility, but also the extracrystalline capacity of water-adsorption/dissociation and proton-adsorption on the twin boundary are superior to those of the counterpart plane in defect-free phase. The synthetic twin Zn1- x Cdx S apparent quantum efficiency of photocatalysis water splitting for hydrogen reached 82.5% (λ = 420 nm). This research opens up an avenue to introduce twins in crystals and it hopes to shed some light on photocatalysis.
Collapse
Affiliation(s)
- Meiling Huang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Zhen Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zizheng Ai
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Dong Shi
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Mingzhi Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xiaogang Yao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yongliang Shao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yongzhong Wu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xiaopeng Hao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
5
|
Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, Arramel A, Jiang J, Kusumawati Y. Recent advances of modification effect in Co 3O 4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci 2023; 650:1550-1590. [PMID: 37490835 DOI: 10.1016/j.jcis.2023.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Azis Yudhowijoyo
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | | | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia.
| |
Collapse
|
6
|
Guo X, Liu X, Wang M, Yan J, Chen Y, Liu S. Unveiling the Origin of Co 3 O 4 Quantum Dots for Photocatalytic Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206695. [PMID: 36775877 DOI: 10.1002/smll.202206695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Spinel cobalt oxide displays excellent photocatalytic performance, especially in solar driven water oxidation. However, the process of water reduction to hydrogen is considered as the Achilles' heel of solar water splitting over Co3 O4 owing to its low conduction band. Enhancement of the water splitting efficiency using Co3 O4 requires deeper insights of the carrier dynamics during water splitting process. Herein, the carrier dynamic kinetics of colloidal Co3 O4 quantum dots-Pt hetero-junctions is studied, which mimics the hydrogen reduction process during water splitting. It is showed that the quantum confinement effect induced by the small QD size raised the conduction band edge position of Co3 O4 QDs, so that the ligand-to-metal charge transfer from 2p state of oxygen to 3d state of Co2+ occurs, which is necessary for overall water splitting and cannot be achieved in Co3 O4 bulk crystals. The findings in this work provide insights of the photocatalytic mechanism of Co3 O4 catalysts and benefit rational design of Co3 O4 -based photocatalytic systems.
Collapse
Affiliation(s)
- Xu Guo
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xing Liu
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Menglong Wang
- International Research Center for Renewable Energy, State Key Laboratory for Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junqing Yan
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yubin Chen
- International Research Center for Renewable Energy, State Key Laboratory for Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shengzhong Liu
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- iChem, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
7
|
Sani A, Murad A, Hassan D, Channa GM, El-Mallul A, Medina DI. Photo-catalytic and biomedical applications of one-step, plant extract-mediated green-synthesized cobalt oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20736-20745. [PMID: 36255577 DOI: 10.1007/s11356-022-23645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In the present work, for the first time, green chemically synthesized and stabilized Co3O4 nanoparticles were employed for catalytic conversion of isopropyl alcohol to acetone by dehydrogenation of IPA. Plant extract of Rosmarinus officinalis was used as a reducing and stabilizing agent for this synthesis. The biosynthesized Co3O4 nanoparticles were annealed at 450℃ followed by their physiochemical characterizations through XRD, SEM, AFM, and FTIR. Size distribution information collected through XRD and AFM back each other, and it was found to be 6.5 nm, having the highest number of nanoparticles in this size range. While SEM confirms the self-arranging property of synthesized nanoparticles due to their magnetic nature, furthermore, the biogenic Co3O4 nanoparticles were studied for their catalytic potential to convert isopropyl alcohol to acetone with the help of a UV-Visible spectrophotometer. The highest photocatalytic conversion of 99% was obtained in time period of 48 s. For the first time ever, nanoparticles were used for 5 cycles to evaluate their recyclable nature and conversion fell from 99 to 86% and the end of the 5th cycle. Later anti-bacterial activity against 3 Gram-positive and 3 Gram-negative strains gave the highest inhibition value of 99% against Streptococcus pneumoniae at 500 µg/mL. Finally, a cytotoxicity study on synthesized nanomaterials was carried out by exposing freshly drawn human macrophages to them. It was found that even at the highest concentration of 500 µg/mL, the nanoparticles showed only 28% lysis.
Collapse
Affiliation(s)
- Ayesha Sani
- Tecnologico de Monterrey, School of Engineering and Sciences, 52926, Atizapan de Zaragoza, Mexico.
| | - Ali Murad
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Dilawar Hassan
- Tecnologico de Monterrey, School of Engineering and Sciences, 52926, Atizapan de Zaragoza, Mexico
| | - Ghulam Mustafa Channa
- Tecnologico de Monterrey, School of Engineering and Sciences, 45201, Zapopan, Guadalajara, Mexico
| | - Ahmed El-Mallul
- Lodz University of Technology, Lodz, Poland
- Medical Department, University of Al Zintan, Al Zintan, Libya
| | - Dora Iliana Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Nuevo Leon, 64849, Monterrey, Mexico
| |
Collapse
|
8
|
Zhang Q, Jing B, Qiu S, Cui C, Zhu Y, Deng F. A mechanism in boosting H2 generation: nanotip-enhanced local temperature and electric field with the boundary layer. J Colloid Interface Sci 2023; 629:755-765. [DOI: 10.1016/j.jcis.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
|
9
|
Shinagawa T, Kotobuki N, Ohtaka A. Oriented growth of stacking α-cobalt hydroxide salt continuous films and their topotactic-like transformation to oriented mesoporous films of Co 3O 4 and CoO. NANOSCALE ADVANCES 2022; 5:96-105. [PMID: 36605813 PMCID: PMC9765712 DOI: 10.1039/d2na00594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Mesoporous metal oxide films composed of nanocrystal assemblies with an aligned crystallographic orientation are key nanostructures for efficient interfacial reactions; however, the development of a simple and versatile method for their formation on substrates still constitutes a challenge. Here we report the template-free centimetre-scale formation of novel cobalt oxide films of Co3O4 and CoO with a [111]-oriented mesoporous structure starting from stacking cobalt hydroxide continuous films. The cobalt hydroxide precursor is formed electrochemically on conductive substrates from a Co(NO3)2 aqueous solution at room temperature. A thorough characterization by means of scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis-NIR spectroscopy, IR spectroscopy and Raman spectroscopy analyses reveals that the precursor film is an α-type layered cobalt hydroxide salt (α-Co-LHS) containing interlayer nitrate and hydrated water, i.e., α-Co(OH) x (NO3) y ·nH2O, with a [001]-oriented stacking film structure. Heat treatment of the [001]-α-Co-LHS films using different conditions, i.e., under air at 550 °C or under vacuum at 500 °C, results in the selective formation of Co3O4 or CoO mesoporous films, respectively. A plausible explanation for the observed centimetre-scale topotactic-like transformation from α-Co-LHS[001] to Co3O4[111] or CoO[111] is given according to the atomic framework similarity between the hydroxide precursor and the final oxides.
Collapse
Affiliation(s)
- Tsutomu Shinagawa
- Electronic Materials Research Division, Morinomiya Center, Osaka Research Institute of Industrial Science and Technology (ORIST) 1-6-50 Morinomiya, Joto Osaka 536-8553 Japan
| | - Natsuko Kotobuki
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology 5-16-1 Ohmiya, Asahi Osaka 535-8585 Japan
| | - Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology 5-16-1 Ohmiya, Asahi Osaka 535-8585 Japan
| |
Collapse
|
10
|
Zeng Y, Zhan X, Li H, Xiong X, Hong B, Xia Y, Ding Y, Wang X. Bottom-to-Up Synthesis of Functional Carbon Nitride Polymer: Design Principles, Controlled Synthesis and Applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Xiong W, Zhou M, Huang X, Yang W, Zhang D, Lv Y, Li H. Direct In Situ Vertical Growth of Interlaced Mesoporous NiO Nanosheets on Carbon Felt for Electrocatalytic Ammonia Synthesis. Chemistry 2022; 28:e202200779. [DOI: 10.1002/chem.202200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Xiong
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Min Zhou
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Xiaoyan Huang
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University Baoding 071003 China
| | - Da Zhang
- Changjiang River Scientific Research Institute Wuhan 430071 China
| | - Yaokang Lv
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
13
|
Baruah MJ, Bora TJ, Gogoi G, Hoque N, Gour NK, Bhargava SK, Guha AK, Nath JK, Das B, Bania KK. Chirally modified cobalt-vanadate grafted on battery waste derived layered reduced graphene oxide for enantioselective photooxidation of 2-naphthol: Asymmetric induction through non-covalent interaction. J Colloid Interface Sci 2022; 608:1526-1542. [PMID: 34742071 DOI: 10.1016/j.jcis.2021.10.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The cobalt oxide-vanadium oxide (Co3O4-V2O5) combined with reduced graphene oxide (rGO) having band gap of ∼ 3.3 eV appeared as a suitable photocatalyst for selective oxidation of 2-naphthol to BINOL. C2-symmetric BINOL was achieved with good yield using hydrogen peroxide as the oxidant under UV-light irradiation. The same catalyst was chirally modified with cinchonidine and a newly synthesized chiral Schiff base ligand having a sigma-hole center. The strong interaction of the chiral modifiers with the cobalt-vanadium oxide was truly evident from various spectroscopic studies and DFT calculations. The chirally modified mixed metal oxide transformed the oxidative CC coupling reaction with high enantioselectivity. High enantiomeric excess upto 92 % of R-BINOL was obtained in acetonitrile solvent and hydrogen peroxide as the oxidant. A significant achievement was the formation of S-BINOL in the case of the cinchonidine modified catalyst and R-BINOL with the Schiff base ligand anchored chiral catalyst. The UV-light induced catalytic reaction was found to involve hydroxyl radical as the active reactive species. The spin trapping ESR and fluorescence experiment provided relevant evidence for the formation of such species through photodecomposition of hydrogen peroxide on the catalyst surface. The chiral induction to the resultant product was found to induce through supramolecular interaction like OH…π, H…Br interaction. The presence of sigma hole center was believed to play significant role in naphtholate ion recognition during the catalytic cycle.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Tonmoy J Bora
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Gautam Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nazimul Hoque
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nand K Gour
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Ankur K Guha
- Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Jayanta K Nath
- Department of Chemistry, S. B. Deorah College, Bora Service, Ulubari, Guwahati 781007, Assam, India
| | - Biraj Das
- Department of Chemistry, Dakha Devi Rasiwasia College, Dibrugarh, Assam 786184, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| |
Collapse
|
14
|
Zhang Y, Gan M, Ma L, Zhao W, Li X, Hua X, Wang L. Oxygen vacancy‐enriched Co3O4 as efficient co‐catalyst for Pt nanoparticles towards methanol electrooxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchao Zhang
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Mengyu Gan
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Li Ma
- Chongqing University College of Chemistry and Chemical Engineering Shazheng street 174Shapingba 400030 Chongqing CHINA
| | - Wei Zhao
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Xudong Li
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Xuelian Hua
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Ling Wang
- Chongqing University college of chemistry and chemical engineering CHINA
| |
Collapse
|
15
|
Yang J, Wang Y, Yang J, Pang Y, Zhu X, Lu Y, Wu Y, Wang J, Chen H, Kou Z, Shen Z, Pan Z, Wang J. Quench-Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo 2 O 4 Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106187. [PMID: 34862718 DOI: 10.1002/smll.202106187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) by efficient catalysts is a crucial step for the conversion of renewable energy into hydrogen fuel, in which surface/near-surface engineering has been recognized as an effective strategy for enhancing the intrinsic activities of the OER electrocatalysts. Herein, a facile quenching approach is demonstrated that can simultaneously enable the required surface metal doping and vacancy generation in reconfiguring the desired surface of the NiCo2 O4 catalyst, giving rise to greatly enhanced OER activities in both alkaline freshwater and seawater electrolytes. As a result, the quenched-engineered NiCo2 O4 nanowire electrode achieves a current density of 10 mA cm-2 at a low overpotential of 258 mV in 1 m KOH electrolyte, showing the remarkable catalytic performance towards OER. More impressively, the same electrode also displays extraordinary activity in an alkaline seawater environment and only needs 293 mV to reach 10 mA cm-2 . Density functional theory (DFT) calculations reveal the strong electronic synergies among the metal cations in the quench-derived catalyst, where the metal doping regulates the electronic structure, thereby yielding near-optimal adsorption energies for OER intermediates and giving rise to superior activity. This study provides a new quenching method to obtain high-performance transition metal oxide catalysts for freshwater/seawater electrocatalysis.
Collapse
Affiliation(s)
- Jin Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yanan Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yajun Pang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Xinqiang Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yinzhuo Lu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yitian Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Jiajie Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Hao Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhehong Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - John Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|
16
|
Budiyanto E, Zerebecki S, Weidenthaler C, Kox T, Kenmoe S, Spohr E, DeBeer S, Rüdiger O, Reichenberger S, Barcikowski S, Tüysüz H. Impact of Single-Pulse, Low-Intensity Laser Post-Processing on Structure and Activity of Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51962-51973. [PMID: 34323466 PMCID: PMC8587604 DOI: 10.1021/acsami.1c08034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report nanosecond, single-pulse laser post-processing (PLPP) in a liquid flat jet with precise control of the applied laser intensity to tune structure, defect sites, and the oxygen evolution reaction (OER) activity of mesostructured Co3O4. High-resolution X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) are consistent with the formation of cobalt vacancies at tetrahedral sites and an increase in the lattice parameter of Co3O4 after the laser treatment. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) further reveal increased disorder in the structure and a slight decrease in the average oxidation state of the cobalt oxide. Molecular dynamics simulation confirms the surface restructuring upon laser post-treatment on Co3O4. Importantly, the defect-induced PLPP was shown to lower the charge transfer resistance and boost the oxygen evolution activity of Co3O4. For the optimized sample, a 2-fold increment of current density at 1.7 V vs RHE is obtained and the overpotential at 10 mA/cm2 decreases remarkably from 405 to 357 mV compared to pristine Co3O4. Post-mortem characterization reveals that the material retains its activity, morphology, and phase structure after a prolonged stability test.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Swen Zerebecki
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Tim Kox
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Stephane Kenmoe
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Eckhard Spohr
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Serena DeBeer
- Max Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Olaf Rüdiger
- Max Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Sven Reichenberger
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Stephan Barcikowski
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
17
|
Fragoso J, Barreca D, Bigiani L, Sada C, Lebedev OI, Modin E, Pavlovic I, Sánchez L, Maccato C. Tailored Co 3O 4-Based Nanosystems: Toward Photocatalysts for Air Purification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44520-44530. [PMID: 34516100 DOI: 10.1021/acsami.1c09921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adverse effects of NOx (NO + NO2) gases on the environment and human health have triggered the development of sustainable photocatalysts for their efficient removal (De-NOx). In this regard, the present work focuses on supported Co3O4-based nanomaterials fabricated via chemical vapor deposition (CVD), assessed for the first time as photocatalysts for sunlight-activated NO oxidation. A proof-of-principle investigation on the possibility of tailoring material performances by heterostructure formation is explored through deposition of SnO2 or Fe2O3 onto Co3O4 by radio frequency (RF) sputtering. A comprehensive characterization by complementary analytical tools evidences the formation of high-purity columnar Co3O4 arrays with faceted pyramidal tips, conformally covered by very thin SnO2 and Fe2O3 overlayers. Photocatalytic functional tests highlight an appreciable activity for bare Co3O4 systems, accompanied by a high selectivity in NOx conversion to harmless nitrate species. A preliminary evaluation of De-NOx performances for functionalized systems revealed a direct dependence of the system behavior on the chemical composition, SnO2/Fe2O3 overlayer morphology, and charge transfer events between the single oxide constituents. Taken together, the present results can provide valuable guidelines for the eventual implementation of improved photocatalysts for air purification.
Collapse
Affiliation(s)
- Javier Fragoso
- Department of Inorganic Chemistry and Chemical Engineering, Córdoba University, 14071 Córdoba, Spain
| | - Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Lorenzo Bigiani
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
| | - Cinzia Sada
- Department of Physics and Astronomy, Padova University and INSTM, 35131 Padova, Italy
| | - Oleg I Lebedev
- Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 14050 Caen, Cedex 4, France
| | - Evgeny Modin
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Spain
| | - Ivana Pavlovic
- Department of Inorganic Chemistry and Chemical Engineering, Córdoba University, 14071 Córdoba, Spain
| | - Luis Sánchez
- Department of Inorganic Chemistry and Chemical Engineering, Córdoba University, 14071 Córdoba, Spain
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
| |
Collapse
|
18
|
Wang D, Wang Y, Fu Z, Xu Y, Yang LX, Wang F, Guo X, Sun W, Yang ZL. Cobalt-Nickel Phosphate Composites for the All-Phosphate Asymmetric Supercapacitor and Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34507-34517. [PMID: 34255472 DOI: 10.1021/acsami.1c04614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, design of cost-effective multifunctional electromaterials for supercapacitors and oxygen evolution reaction (OER) and enhancing their functionalities have become an emphasis in energy storage and conversion. Herein, a series of cheap and functional phosphate composites with different ratios of cobalt and nickel are synthesized using a simple polyalcohol refluxing method, and their excellent capacity and OER properties are systematically studied. Notably, owing to the different major role of Co and Ni elements in the phosphate composites for capacity and OER, the optimal electroconductibility, structural adjustment, electrochemical active sites, and activities for capacity and OER are obtained from the composites with the different ratios of Co/Ni. In addition, using high-capacity BiPO4 (BPO) as the negative electrodes, the new type of all-phosphate asymmetric supercapacitor (CNPO-40//BPO) shows a high energy density and reaches 36.84 W h kg-1 at a power density of 254.52 W kg-1. Its cyclic stability is also more excellent than that of the CNPO-40//AC device using commercial activated carbon as the negative electrodes. This study is beneficial to the more in-depth research on efficient dual-function electromaterials in capacity and OER and provides a high-efficient way to improve the practicality of asymmetric supercapacitors using the high-capacity Bi-based electromaterials as the negative electrodes.
Collapse
Affiliation(s)
- De Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yanjing Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zhenyu Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Li-Xia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Feng Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Xiaoling Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Wenjuan Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zheng-Long Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| |
Collapse
|
19
|
Fan L, Meng T, Yan M, Wang D, Chen Y, Xing Z, Wang E, Yang X. Rational Construction of Ruthenium-Cobalt Oxides Heterostructure in ZIFs-Derived Double-Shelled Hollow Polyhedrons for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100998. [PMID: 34075692 DOI: 10.1002/smll.202100998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Transition metal oxides (TMOs) and their heterostructure hybrids have emerged as promising candidates for hydrogen evolution reaction (HER) electrocatalysts based on the recent technological breakthroughs and significant advances. Herein, Ru-Co oxides/Co3 O4 double-shelled hollow polyhedrons (RCO/Co3 O4 -350 DSHPs) with Ru-Co oxides as an outer shell and Co3 O4 as an inner shell by pyrolysis of core-shelled structured RuCo(OH)x @zeolitic-imidazolate-framework-67 derivate at 350 °C are constructed. The unique double-shelled hollow structure provides the large active surface area with rich exposure spaces for the penetration/diffusion of active species and the heterogeneous interface in Ru-Co oxides benefits the electron transfer, simultaneously accelerating the surface electrochemical reactions during HER process. The theory computation further indicates that the existence of heterointerface in RCO/Co3 O4 -350 DSHPs optimize the electronic configuration and further weaken the energy barrier in the HER process, promoting the catalytic activity. As a result, the obtained RCO/Co3 O4 -350 DSHPs exhibit outstanding HER performance with a low overpotential of 21 mV at 10 mA cm-2 , small Tafel slope of 67 mV dec-1 , and robust stability in 1.0 m KOH. This strategy opens new avenues for designing TMOs with the special structure in electrochemical applications.
Collapse
Affiliation(s)
- Libing Fan
- College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dewen Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuting Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhicai Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Cao Y, Ge J, Jiang M, Zhang F, Lei X. Acid-Etched Co 3O 4 Nanoparticles on Nickel Foam: The Highly Reactive (311) Facet and Enriched Defects for Boosting Methanol Oxidation Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29491-29499. [PMID: 34152717 DOI: 10.1021/acsami.1c04045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The confirmation and regulation of active sites are particularly critical for the design of methanol oxidation reaction (MOR) catalysts. Here, an acid etching method for facet control combined with defect construction was utilized to synthesize Co3O4 nanoparticles on nickel foam for preferentially exposing the (311) facet with enriched oxygen vacancies (VO). The acid-leached oxides exhibited superior MOR activity with a mass activity of 710.94 mA mg-1 and an area-specific activity of 3.390 mA cm-2 as a result of (i) abundant active sites for MOR promoted by VO along with the highly active (311) facet being exposed and (ii) phase purification-reduced adsorption energy (Eads) of methanol molecules. Ex situ X-ray photoelectron spectroscopy proved that highly active CoOOH obtained via the activation of plentiful Co2+ effectively improved the MOR. Density functional theory calculations confirmed that the selective exposed (311) facet has the lowest Eads for CH3OH molecules. This work puts forward acid etching as the facet modification and defect engineer for nanostructured non-noble catalysts, which is expected to result in superior electrochemical performance required for advanced alkaline direct methanol fuel cells.
Collapse
Affiliation(s)
- Yanming Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Meihong Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| |
Collapse
|
21
|
Bi Y, Li R, Guo F, Zhu C, Pei J. Photocatalytic purification of vehicle exhaust using CeO 2-Bi 2O 3 loaded on white carbon and tourmaline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17724-17738. [PMID: 33400120 DOI: 10.1007/s11356-020-11899-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Photocatalysts are environmentally friendly materials that can be used to degrade vehicle exhaust. CeO2-Bi2O3 loaded on white carbon and tourmaline, as the favorable absorption materials, was prepared respectively for vehicle exhaust photocatalytic purification. Brunauer-Emmett-Teller (BET) adsorption isotherm, scanning electron microscope (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were applied to characterize the composite materials. The optimum contents of the loading materials were obtained from the comparison of purification efficiency of vehicle exhaust components after a 60-min photocatalytic reaction under visible and ultraviolet (UV) irradiation, including hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), and nitrogen oxides (NOx). The results show that the proposed preparation method could improve particle dispersion and distribution uniformity, reduce particle agglomeration, and increase specific surface area. The optical response range of the CeO2-Bi2O3 with loading materials can be extended from UV light to visible light. CeO2-Bi2O3 loaded on tourmaline show excellent photocatalytic purification effect under visible light. The purification efficiency of CeO2-Bi2O3 loaded on tourmaline for HC, CO, CO2, and NOx were 30.8%, 30.6%, 35.3%, and 47.6%, respectively. Moreover, the concentrations of vehicle exhaust components decrease with time, which is well fitted by the Langmuir-Hinshelwood pseudo-first-order kinetics model, and the purification rate constant of CeO2-Bi2O3 composites under visible light is greater than that under UV light. The prepared photocatalytic materials also exhibit the excellent reusability.
Collapse
Affiliation(s)
- Yanqiu Bi
- School of Highway, Chang'an University, Middle Section of Nanerhuan Road, Xi'an, 710064, Shaanxi, China
| | - Rui Li
- School of Highway, Chang'an University, Middle Section of Nanerhuan Road, Xi'an, 710064, Shaanxi, China
| | - Fucheng Guo
- School of Highway, Chang'an University, Middle Section of Nanerhuan Road, Xi'an, 710064, Shaanxi, China
| | - Chundong Zhu
- School of Highway, Chang'an University, Middle Section of Nanerhuan Road, Xi'an, 710064, Shaanxi, China
| | - Jianzhong Pei
- School of Highway, Chang'an University, Middle Section of Nanerhuan Road, Xi'an, 710064, Shaanxi, China.
| |
Collapse
|
22
|
Li W, Ye Y, Zhang S, Liang C, Zhang H. A fluidized electrocatalysis approach for ammonia synthesis using oxygen vacancy-rich Co3O4 nanoparticles. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00721a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a fluidized electrocatalysis system, using an aqueous ultrafine Co3O4 nanoparticle catalyst for the efficient electrocatalytic nitrogen reduction reaction.
Collapse
Affiliation(s)
- Wenyi Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yixing Ye
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| |
Collapse
|